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A new scheme of sky pixelization GLESP (Gauss-LEgendre Sky Pixelization) is developed for
CMB maps. The scheme is based on the Gauss—Legendre polynomials zeros and allows one to
create strict orthogonal expansion of the map. A corresponding code has been implemented
and comparison with other methods has been done. The package has been realized using basic
principles of the FADPS data reduction system. The structure and the main procedures of the

package are described.
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1. Introduction

The process of the cosmic microwave background
(CMB) radiation data analysis contains several steps
including

1) registration of time ordered data,

2) pixelization,

W

map — spherical harmonics transformation,

5) statistics analysis,
6
7) cosmological parameters estimation.

)
)
4) component, separation,
)
) C(£)—spectrum calculation and

In this paper we consider steps (2), (3) and (6).

Starting from the COBE experiment using the
so-called Quadrilateralized Sky Cube Projection (see
Chan and O’Neill 1976, O’Neill and Laubscher 1976,
Greisen and Calabretta 1993), the problem of the
whole sky CMB pixelization has attracted great in-
terest. At least three methods of the CMB celes-
tial sphere pixelization have been proposed and im-
plemented after the COBE pixelization scheme: the
Icosahedron pixelizing by Tegmark (1996), the Igloo
pixelization by Crittenden and Turok (1998, here-

cosmology: cosmic microwave background — cosmology: observations — methods:

after CT98) and the HEALPix! method by Gérski et
al. (1999) (with the last modification in 2003). Two
important questions mentioned already by Tegmark
(1996) are now under discussion: a) what is the op-
timal method for the choice of the Ny, positions of
pixel centers, shapes and sizes to provide (as good as
possible) the compact uniform coverage of the sky by
pixels with equal areas, and b) what is the best way
to approximate any convolutions of the maps by sums
using pixels ?

All the above mentioned pixelization schemes were
devoted to solving the first problem as accurate as
possible, and the answer to the second question usu-
ally follows for the chosen pixelization scheme.

In this paper we change the focus of the problem
to processing on the sphere and then determine the
scheme of pixelization. We would like to remind that
pixelization of the CMB data on the sphere is only
some part of the general problem, which is the deter-
mination of the coefficients of the spherical harmonic
decomposition of the CMB signal for both anisotropy
and polarization. These coefficients, which we call
aim, are used in subsequent steps in the analysis of

1 currently http://www.eso.org/science/healpix/
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the measured signal, and in particular, in the determi-
nation of the power spectra, C(£), of the anisotropy
and polarization (see review in Hivon et al. 2002),
in some special methods for components separation
(Stolyarov et al. 2002; Naselsky et al. 2003a) and
phase statistics (Chiang et al. 2003, Naselsky et al.
2003a,b; Naselsky et al., 2004; Coles et al. 2004).

Here we propose a specific method to calculate
the coefficients a;y,. It is based on the so-called Gaus-
sian quadratures and is presented in Sec. 2. In this
specific pixelization scheme corresponds the position
of pixel centers along the f#—coordinate to so—called
the Gauss — Legendre quadrature zeros and it will be
shown (Sec. 5) that this method increases the accu-
racy of calculations essentially.

Thus, the method of calculation of the coefficients
aym,, dictates the method of the pixelization. We call
our method GLESP, the Gauss—Legendre Sky Pix-
elization (Doroshkevich et al. 2003; Verkhodanov et
al. 2003, 2004). We have developed a special code for
the GLESP approach and a package of codes which
are necessary for the whole investigation of the CMB
data including the determination of anisotropy and
polarization power spectra, Cy, the Minkowski func-
tionals and other statistics.

This paper is devoted to description of the main
idea of the GLESP method, the estimation of the ac-
curacy of the different steps and of the final results,
the description of the GLESP code and its testing.
We do not discuss the problem of integration over
a finite pixel size for the time ordered data in this
paper. The simplest scheme of integration over pixel
area is to use equivalent weight relatively to the cen-
ter of the pixel. The GLESP code uses this method
as HEALPix and Igloo do.

Also, we described the basic procedures of the
package and their interactions. The package is re-
alized using principles of the flexible data process-
ing system (FADPS) operating at the RATAN-600
(Verkhodanov et al. 1993; Verkhodanov 1997a).

2. Main ideas and basic relations

The standard decomposition of the measured tem-
perature variations on the sky, AT(6, ¢), in spherical
harmonics is

T0.0)=)
=2

3
I

£
afmnm(0a¢) ) (1)
m=—/{

where P;"(z) are the associated Legendre polynomi-
als. For a continuous AT(z,¢) function, the coeffi-
cients of decomposition, ag,,, are

1 27
ton= [ o [ a8AT(@, 070 0), 3)
where Y, denotes complex conjugation of Yz,,. For
numerical evaluation of the integral Eq.(??) we will
use the Gaussian quadratures, a method which was
proposed by Gauss in 1814, and developed later by
Christoffel in 1877. As the integral over z in Eq.(?7)
is an integral over a polynomial of x, we may use the
following equality (Press et al. 1992):

1
/_ daAT (@ )V, 0) =
N
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where w; is a proper Gaussian quadrature weighting
function. Here the weighting function w; = w(z;) and
AT (xj, §)Y,: (%, $) are taken at points x; which are
the net of roots of the Legendre polynomial

Py (z;) =0, (5)

where N is the maximal rank of the polynomial under
consideration. It is well known that the equation (5)
has N number of zeros in interval —1 < z < 1. For
the Gaussian—-Legendre method Eq.(??), the weight-
ing coefficients are (Press et al. 1992)

P, )
J

wj; =

where ' denotes a derivative. They can be calculated
together with the set of z; with the “gauleg” code
(Press et al. 1992, Sec. 4.5).

In the GLESP approach are the trapezoidal pix-
els bordered by 6 and ¢ coordinate lines with the
pixel centers (in the 6 direction) situated at points
with z; = cosé;. Thus, the interval —1 < z < 1is
covered by N rings of the pixels (details are given
in Sec. 3). The angular resolution achieved in the
measurement of the CMB data determines the up-
per limit of summation in Eq. (??), £ < lpnasz- To
avoid the Nyquist restrictions we use a number of
pixel rings, N > 2/,,4,. In order to make the pixels
in the equatorial ring (along the ¢ coordinate) nearly
squared, the number of pixels in this direction should
be Ng*** ~ 2N. The number of pixels in other rings,

N j;, must be determined from the condition of making
the pixel sizes as equal as possible with the equatorial
ring of pixels.

Fig. 77 shows the weighting coefficients, w;, and
the position of pixel centers for the case N = 31. Fig.
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Figure 1: Gauss-Legendre weighting coefficients (w;)
versus Legendre polynomial zeros (r; = cosf;) being
centers of rings used in GLESP for the case of N =
31. Positions of zeros are plotted by vertical lines.
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Figure 2: Ring center position (x; = cosf;) vs ring
number for 2 pizelization schemes, HEALPix (solid)
and GLESP (dashed). Figure demonstrates the case
of N = 31.

77 compares some features of the pixelization schemes
used in HEALPix and GLESP (see Sec.4). Fig. 7?7
compares pixel shapes and distribution on a sphere
in a full sky Mollweide projections of HEALPix and
GLESP maps.

In the definition (??) are the coefficients ag,, com-
plex quantities while AT is real. In the GLESP code
started from the definition (??) we use the following

representation of the AT

bmaz

AT = anYuw(b, )+

=2

l
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Thus,
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where P;"(cos §) are the well known associated Legen-
dre polynomials (see Gradshteyn and Ryzhik 2000).
In the GLESP code, we use normalized associated
Legendre polynomials f;™:

2 +1 (£ —m)!

[ (@) = —m

(10)

where £ = cosf, and 6 is the polar angle. These
polynomials, f;*(z), can be calculated using two well
known recurrence relations. The first of them gives
fi*(z) for a given m and all £ > m:

4z -1
Bl

2£+1(€—1) —m2
V-3 - fiZ2-

This relation starts with
(=)™ [(2m + 1!

V2 (2m — 1!
foir = 2V2m + 3f .

The second recurrence relation gives f;"(x) for a given
£ and all m <I:

fi'(z) =

(11)

fe) = (1—a?)m2

?

VE—m—1)(l+m+2)f () +
2z(m + 1) () 4
Vi—gz2 ¢
+V({E-m)t+m+1)f(z) =0

This relation is started with the same f{(z) and
f?(z) which must be found with (??).

(12)
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Figure 3: Schematic representation of 2 types of pizelization on sphere: HEALPix (top) and GLESP (bottom).

Various color of pixels is used to show their shape.

As is discussed in Press et al. (1992, Sec. 5.5),
the first recurrence relation (??) is formally unstable
if the number of iteration tends to infinity. Unfor-
tunately, there are no theoretical recommendations
what the maximum iteration one can use in the quasi-
stability area. However, it can be used because we are
interested in the so-called dominant solution (Press et
al. 1992, Sec. 5.5), which is approximately stable. The
second recurrence relation (??) is stable for all £ and
m.

3. Properties of GLESP

Following the previous discussion we define the new
pixelization scheme GLESP as follows:

e In the polar direction z = cosf, we define
zj,j =1,2,..,,N, as the net of roots of Eq. (?7).

e Each root z; determines the position of a ring
with N ; pixel centers with ¢—coordinates ¢;.

o All the pixels have nearly equal area.

e Each pixel has weight w; (see Eq. (?7?)).

In our numerical code which realizes the GLESP
pixelization scheme we use the following conditions.

e Borders of all pixels are along the coordinate
lines of § and ¢. Thus with a reasonable accuracy they
are trapezoidal.

e The number of pixels along the azimuthal di-
rection ¢ depends on the ring number. The code
allows an arbitrary number of these pixels to be
choosen. The number of pixels depends on the 4,45
accepted for the CMB data reduction.

e To satisfy the Nyquist’s theorem, the number
N of the ring along the 2 = cos(#) axis must be taken
as N > 20,0 + 1.

e To make equatorial pixels roughly square, the
number of pixels along the azimuthal axis, ¢, is taken
as Nj'*® = int(2m/dfy,+0.5), where k = int(N +1)/2,
and dﬂk = 0-5(0k+1 — Gk,l).

e The nominal size of each pixel is defined as
Spizet = dfxd¢, where dfy, is the value on the equa-
torial ring and d¢ = 27/NJ'* on equator.

e The number Ng of pixels in the j** ring at z =
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Figure 4: Pixel size/equator pizel area vs ring-number
for GLESP for number of rings N = 300 and N =
5000.

x; is calculated as Ng = int(27,/1 — x?/Spiwel +0.5);
e Polar pixels are triangular.
e Because the number N7 differs from 2% where
k is integer, we use for the Fast Fourier transforma-
tion along the azimuthal direction the FFTW code
(Frigo and Johnson 1997). This code permits one to

use not only 2™-approach, but other base-numbers
too, and provide even higher speed.

With this scheme, the pixel sizes are equal inside
each ring, and with a maximum deviation between the
different rings of ~1.5% close to the poles (Fig??).
Increasing resolution decreases an absolute error of
an area because of the in-equivalence of polar and
equator pixels proportionally to N 2.

Fig. 7?7 shows that this pixelization scheme for
high resolution maps (e.g. £mqe > 500) produces
nearly equal thickness df for most rings.
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Figure 5: Pizel size along polar angle (€10, = 250).

GLESP has not the hierarchical structure, but the
problem of the closest pixel selection is on the soft-
ware level. Despite GLESP is close to the Igloo pix-
elization scheme in the azimuthal approach, there is
a difference between the two schemes in connection
with the 6-angle (latitude) pixel step selection. There-
fore, we can not unify these two pixelizations. The
Igloo scheme applied to the GLESP latitude step will
give too different pixel areas. The pixels will be nei-
ther equally spaced in latitude, nor of uniform area,
like Igloo requires.

4. GLESP pixel window function

For application of the GLESP scheme, we have to take
into account the influence of the pixel size, shape and
its location on the sphere on the signal in the pixel
and its contribution to the power spectrum C(£). The
temperature in a pixel is (Gérski et al. 1999; CT98)

AT, = [ Wi,0)576.0)d0, (13)

where W,(8, ¢) is the window function for the p-th
pixel with the area AQ,. For the window function
Wp(8,4) = 1 inside the pixel and Wp(6, ¢) = 0 out-
side (Gérski et al. 1999), we have from Eq.(??) and
Eq.(?7):

AT, = Zangp(ﬁ, m),
£,m

where
W,(6,m) = / 4OV, (6, 6) Vern (6, 9)

and

W,(0,6) = > Wyp(t,m)Ys, (6, ).

L,m

(14)
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The corresponding correlation function (CT98) for
the pixelized signal is
ZC

(AT,AT,) W (l,m). (15)

4.1. Accuracy of the window function estima-
tion

The discreteness of the pixelized map determines the
properties of the signal for any pixels and restricts the
precision achieved in any pixelization scheme. To esti-
mate this precision, we can use the expansion (CT98)

AT™P (4, ¢) = Zs AT, W, (6, ¢) =

= 3 Vi 0.9) (16)

amop — / AQAT™ (9, §) Y75, (6, ) =

= S,AT, Wy (¢,m), (17)

p

where S}, is the area of the p-th pixel. These relations
generalize Eq. (?77?), taking properties of the window
function into account. The GLESP scheme uses the
properties of Gauss—Legendre integration in the polar
direction while azimuthal pixelization for each ring is
similar to the Igloo scheme, and we get (see Eq.(4)):

() ] ima ) Sin (wm/Ng) y
m ex
v 27TA£L"p Ng (ﬂ.m/Ng)
zp+0.5Az,
x/ dz " (z), (18)
zp—0.5Az,
where Azp, = (Tp41 — Tp—1)/2 with z, the p-th

Gauss—Legendre knot and N g the number of pixels in
the azimuthal direction. This integral can be rewrit-
ten as follows:

zp+0.5Az,
/ defi"(x) ~

»—0.5Az,
1+ (=1DF m Az, \ !
= l;) Wf(k)e (zp) (Tp> ) (19)

where f)}"(2,) denotes the k-th derivatives at = =
zp. So, for Az, < 1 we get the expansion of (?7):

(2)m 2
£ (Axp) ) 7 (20)

(2) — (o)
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where W,SO) (€,m) ~

(ZL: ) o (o) e, e

where W2 (¢, m) is independent of Az,,. For the accu-
racy of this estimate we get

SW,(,m) WP (t,m) — W (6,m) _
Wy(l,m) w9 (€, m) -
N ‘ i ;?f) (22)

According to the last modification of the
HEALPix, an accuracy of the window function repro-
duction is about 1073, To obtain the same accuracy
for the W, (£, m), we need to have

I
My
Using the approximate link between Legendre and

Bessel functions for large £ (Gradshteyn and Ryzhik
2000) f;* o« I (£z) we get:

Az, < 0.15zp/+/m(m + 1), (24)

and for Az, ~ 7/N we have from Eq.(??)

Wol,m) >1072. (ﬁ’]"\;“”)Q ) (25)

For example, for N = 2{,,,, we obtain
SW,(l,m)/W,(£,m) ~ 2.3-1073, what is a quite rea-
sonable accuracy for £,,,, ~ 3000—6000.

1
2

Az, <0.15 ‘ (23)

=Tp

W, (£, m)

5. Structure of the GLESP code

The code is developed in two levels of organization.
The first one, which unifies F77 FORTRAN and C
functions, subroutines and wrappers for C routines
to be used for FORTRAN calls, consists of the main
procedures: ‘signal’, which transforms given values
of agm to a map, ‘alm’, which transforms a map to
Qgm, ‘cl2alm’, which creates a sample of ay,, coeffi-
cients for a given Cy and ’alm2cl’, which calculates C,
for ag,,. Procedures for code testing, parameters con-
trol, Kolmogorov-Smirnov analysis for Gaussianity of
agm and homogeneity of phase distribution, and oth-
ers, are also included. Operation of these routines is
based on a block of procedures calculating the Gauss—
Legendre pixelization for a given resolution parame-
ter, transformation of angles to pixel numbers and
back.

The second level of the package contains the pro-
grams which are convenient for the utilization of the
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Figure 6: Structure of the GLESP package.

first level routines. In addition to the straight use of
the already mentioned four main procedures, they
also provide means to calculate map patterns gen-
erated by the Ysg, Y51 and Y3, spherical functions,
to compare two sets of agy, coefficients, to convert
a GLESP map to a HEALPix map, to convert a
HEALPix map, or other maps, to a GLESP map.

Fig. ?7 outlines the GLESP package. The circle
defines the zone of the GLESP influence based on the
pixelization library. It can include several subroutines
and operating programs. The basic program ‘cl_map’
of the second level, shown as a big rectangle, interacts
with the first level subroutines. These subroutines are
shown by small rectangles and call external libraries
for the Fourier transform and Legendre polynomial
calculations. The package reads and writes data both
in ASCII table and FITS formats. More than 10 pro-
grams of the GLESP package operate in the GLESP
zone.

The present development of the package has
also parallel calculation implementation. Visualiza-
tion procedures in OPEN GL have been developed at
Ta0, Cambridge.

5.1. Basic organization principles of the

GLESP package

The package is realized using the FADPS ideology
(Verkhodanov et al. 1993, Verkhodanov 1997). It sat-
isfies to the following principles:

e Each program is designed to be easily joint
with other modules of a package. It operates both

with a given file and standard output.

e Each program can operate separately.

e Fach program is accessible in a command
string with external parameters. It has a dialogue
mode and could be tuned with a resource file in some
cases.

e Qutput format of resulting data is organized
in the standard way and is prepared in the F-format
(Verkhodanov & Kononov 2002) or ASCII table ac-
cessible for other packages.

e The package programs can interact with other
FADPS procedures and CATS database.

5.2. Main operations

There are four types of operations accessible in the
GLESP package:

e Operations related to maps:

1. Spherical harmonic decompostion of a map
into agy, (cl2map).

2. Smooth a map with a Gaussian beam
(cl2map).

3. Sum/difference/averaging between maps
(difmap).

4. Scalar multipication/division (difmap).

5. Map rotation (difmap).

6. Conversion from Galactic to equatorial co-
ordinates (difmap).

7. Cut temperature values in a map (mapcut).

8. Cut a zone in/from a map (mapcut).
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9. Cut out cross-sections from a map (map-

cut).

10. Produce simple patterns (mappat).

11. Read ASCII into binary (mappat).

12. Read point sources to binary map (map-
pat).

13. Print values in map (mapcut).

14. Find min/max values in map sample per
pixel (difmap).

15. Simple statistic on a map (difmap).

16. Correlation coefficients of two maps
(difmap).

17. Pixel size on a map (ntot).

18. Plot figures (f2fig).

e Operations related to agy, :

1. Synthesise the map from given agm,
(cl2map).
2. Sum/difference (difalm).
Scalar multipication/division (difalm).
Vector multipication/division (difalm).
Add phase to all harmonics (difalm).
Cut out given mode of harmonics (difalm).
. Calculate angular power spectrum
(alm2dl).
8. Calculate phases (alm2dl).
9. Select the harmonics with a given phase
(alm2dl).
10. Compare two agy, samples (checkalm).
11. Produce agy, of map derivatives (dalm).

N otk w

e Operations related to angular power spectrum
Cy:

1. Calculate power spectrum Cy (alm2dl).
2. Simulate a map by a given C; (clZ2map).
3. Simulate ag,, by C; (createalm).

e Operations related to phases ¢g,, and ampli-
tudes |agm| :

1. Calculate phases ¢, (alm2dl).

2. Calculate amplitudes |agm| (alm2dl).

3. Simulate asm by phases (createalm).

4. Select harmonics with a given phase
(alm2dl).

5. Add a phase to all harmonics (difalm).

5.3. Main programs

The following procedures organized as separate pro-
grams in the pixel and harmonics domain are realized
now:
alm2dl
coefficients.
checkalm compares different ag,,—samples.

calculates spectra and phases by agmy,—

cmap converts HEALPix format maps to the
GLESP package format.

cl2map converts a map to ag,—coeflicients and
agm—coeflicients to a map, simulates a map by a given
Cy—spectrum.

createalm creates agm—coefficients by phases, am-
plitudes or/and C,—spectrum.

dalm calculates the 1-st and 2-nd derivatives by
agm—coefficients

difalm calculates arithmetic operations over ag,,—
samples.

difmap  calculates arithmetic operations over
maps, produces coordinates transformations.

f2fig produces color pictures in GIF-images.

f2map converts a GLESP map to a HEALPix
format map.

fitstof converts the HEALPix ag,,,—coefficients da-
ta format to the GLESP format a¢,,—data.

ftofits converts the GLESP format ag,,—data to
the HEALPix ay,,—coefficients data format.

mapcut  cuts amplitude and coordinates in
a GLESP map, produces one-dimensional cross-
sections from a given maps allowing one to simulate
RATAN-600 data for CMB study (Parijskij 2001).

mappat produces standard map patterns, reads
ASCII data to produce a map, reads point sources po-
sition from ASCII files including CATS data (Verkho-
danov et al. 1997b).

psep makes phase analysis separation (Naselsky
et al. 2003a) for two input as,,—samples.

5.4. Data format

The GLESP data are represented in two formats de-
scribing ag,—coefficients and maps.

agm—coefficients data contains index describing
number of £ and m modes corresponding to the
HEALPix, real and imaginary parts of agp. These
three parameters are described by three—fields records
of the Binary Table of the Fformat (Verkhodanov &
Kononov 2002).

Map data are described by the three—fields Binary
Table F—format containing a vector of z; = cos 8 posi-
tions, a vector of numbers of pixels per each layer Ny,,
and set of temperature values in each pixel recorded
by layers from the North Pole.

6. Test and precision of the GLESP
code

Three tests allow us to check the code. The first of
them is from the analytical maps

5
Yoo =1/— 32> -1
2,0 =4/ 167T(3$ )
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15
Yau = —y/ gzzz\/ 1—22cos ¢,

1
Yo 1= _ng\/l —z%sin @,

_ 15 2
Yoo = 3277(1 x*) cos(2¢),
_ 15 9 .
Yo _9=— 327r(1 — z7) sin(29) .

to calculate ag,,- The code reproduces the theoretical
Gm better than 107,

The second test is to reproduce an analytical map
AT (z,¢) = Yo (z,¢) from a given aj,. These tests
check the calculations of the map and spherical coef-
ficients independently.

The third test is the reconstruction of ay,, after
the calculations of the map, AT (z, ¢), and back. This
test allows one to check orthogonality. If the transfor-
mation is based on really orthogonal functions it has
to return after forward and backward calculation the
same ag,, values.

Precision of the code can be estimated by intro-
duction of a set of as, = 1 and reconstruction of
them. This test showed that using relation (??) we
can reconstruct the introduced ag,, with a precision
~ 1077 limited only by single precision of float point
data recording and with a precision ~ 105 for rela-
tion (?7).

1x10° 4

1x10" ,M

10" 4

HEALPix, 4 iterations

504

8]
~
2 10"
GLESP, no iterations

110 o
10"

110" o

T T T T
0 1000 2000 3000 4000
Multipole number

Figure 7: Comparison of calculation accuracy in
HEALPix (4 iterations) of the version 1.20 and in
GLESP (no iterations) methods. Number of pixels is
approzimately the same (~ 6 x 107) and calculation
time is proportional to the number of iterations.

Fig. ?? demonstrates the accuracy of C, calcula-
tions using HEALPix and GLESP?

It should be noted that unlike the HEALPix code,
the GLESP method does not need any iteration for
calculation of the ay,, coefficients and therefore is
much faster. Qur definition of the ag,, coefficients is
exactly the same as in HEALPix as an estimator of
the anisotropy power spectrum:

C0)

2
|ago|2 +2 Z |agm|2] . (26)

m=1

1
T 2U+1

7. Re-pixelization

To transfer a sky distribution map from one pixel grid
(e.g. from HEALPix to GLESP) to another one, we
should use one of 2 ways:

1) to calculate ag,—coefficients and after that to
restore a map in a new grid;

2) or to use re-pixelization procedures on the cur-
rent brightness distribution.

Any re-pixelization procedure will cause loss of
information and thereby introduce uncertainties and
errors. The GLESP code has procedures for map re-
pixelization based on two different methods in the
AT(6, ¢p)—domain: the first one consists in averaging
input values in the corresponding pixel, the second
one is connected with spline interpolation inside the
pixel grid.

In the first method, we consider input pixels which
fell in our pixel with values AT(6;,¢;) to be aver-
aged with a weighting function. The realized weight-
ing function is a function of simple averaging with
equal weights. This method is widely used in appro-
priation of a given values to the corresponding pixel
number.

In the second method of re-pixelization, we use
a spline interpolation approach. If we have a map
AT(0;, ¢;) recorded in the knots different from the
Gauss—Legendre grid, it is possible to repixelize it
to our grid AT(6}, ¢}) using approximately the same
number of pixels and the standard interpolation
scheme based on the cubic spline approach for the
map re-pixelization. This approach is sufficiently fast
because the spline is calculated once for one vector
of the tabulated data (e.g. in one ring), and values
of interpolated function for any input argument are
obtained by one call of separate routine (see routines
“spline” to calculate second derivatives of interpolat-
ing function and “splint” to return a cubic spline in-
terpolated value in Press et al. (1992)).

2 Calculations were carried out and Fig.?? was produced by
Vlad Stolyarov at IaO, Cambridge.
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Figure 8: Power spectra calculated for the ini-
tial HEALPix map (upper curve) with lpar =
1000, Ngige = 1024, pizel size = 11.80260',
and Nio;=12582912, and for resulting re-pizelized
GLESP map (lower curve) with the closest possible
pizel size = 11.80380", Ny, =12581579. Deviations
of the power spectra at high £ illustrate the ratio of
the HEALPiz and GLESP window functions.

Our spline interpolation consists of the three
steps:

e we set equidistant knots by the ¢—axis to re-
produce an equidistant grid;

e we change the grid by x = cos(f)—axis to the
required GLESP grid;

e after that, we recalculate ¢-knots to the rings
corresponding to the GLESP z-points.

Fig. 77 demonstrates the deviation of accuracy of
the power spectrum in a case of re-pixelization from
a HEALPix map to a GLESP map with the same
resolution. As one can see, for the range £ < £,4,/2,
re-pixelization reproduces correctly all properties of
the power spectra. For £ > £,,,,/2 some additional
investigations need to be done to take into account
the pixel-window function. This work is in progress.

8. Summary

We suggest a new scheme “GLESP” for sky pixeliza-
tion based on the Gauss-Legendre quadrature zeros.
It has strict expansion by the orthogonal functions
which gives accuracy for a,,,—coefficients calculations
below 10~7 without any iterations. We realized two
approaches for Legendre polynomials calculation us-
ing L— and M—methods of calculation schemes.
Among the main advantages of this scheme are

e 3 high accuracy in calculation agy,,

e a high speed because of no iterations,

e an optimal selection of resolution for a given
beam size, which means an optimal number of pixels
and a pixel size.

A corresponding code has been designed in FOR-
TRAN 77 and C languages for procedures of the CMB
sky map analysis.

The a4, calculation is the main goal. agy,-s are
used in component separation methods and tests for
non-Gaussianity (Chiang et al. 2003, Naselsky et al.
2003a,b). It is oriented on the fast and accurate cal-
culation of the ag,;, for the given resolution specified
by the beam size. Using accurately calculated agy,-
s, one can reproduce any pixelization scheme by the
given pixel centers: GLESP, HEALPix, Igloo or Icosa-
hedron.
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