УДК 520.82; 004.41

СИСТЕМА УПРАВЛЕНИЯ И СБОРА ДАННЫХ ДЛЯ ВЫСОКОСКОРОСТНЫХ ШИРОКОФОРМАТНЫХ ПЗС-СИСТЕМ

© 2015 И. В. Афанасьева^{1,2*}

¹Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия
²Университет ИТМО, Санкт-Петербург, 197101 Россия
Поступила в редакцию 16 февраля 2015 года; принята в печать 27 марта 2015 года

Астрономические ПЗС-системы на основе контроллеров DINACON второго поколения были разработаны в Лаборатории перспективных разработок САО РАН более семи лет назад и с тех пор находятся в постоянной эксплуатации на телескопах БТА и Цейсс-1000. Фотоприемниками в таких системах служат монолитные широкоформатные ПЗС-матрицы. В статье описывается созданное программное обеспечение для управления семейством широкоформатных ПЗС-систем с контроллером DINACON-II. Комплекс программ обеспечивает сбор, предварительную обработку, визуализацию и хранение видеоданных, а также управление ПЗС-системой, ее настройку и диагностику.

Ключевые слова: annapamypa: детекторы — методики: обработка изображений

1. ВВЕДЕНИЕ

Лаборатория перспективных разработок САО РАН разрабатывает и изготавливает ПЗС-системы (системы цифровой регистрации изображений на основе приборов с зарядовой связью) для крупнейшего в Евразии 6-м телескопа и других оптических телескопов. Система [1] состоит из матричного ПЗС-приемника изображения, встроенного в криостатируемую камеру, контроллера, и интерфейса ввода цифровых данных в удаленный управляющий компьютер (хост-компьютер). Мы сфокусируемся на системах регистрации с фотоприемниками E2V CCD42-40 (формат 2048×2048 пикселей) и E2V CCD42-90 (формат 2048×4608 пикселей). Для ввода данных в управляющий компьютер используется стандартный модуль Ethernet 100 Мбит. Программное обеспечение, необходимое для выполнения задачи управления ПЗС-системой и сбора астрономических данных (изображений) должно обеспечивать надежность, высокую пропускную способность, а также обладать средствами для настройки и диагностики системы регистрации. Использование объектно-ориентированных методологий и средств для создания и отладки приложений [2] позволяет эффективно разрабатывать подобные программные системы.

*E-mail: riv@sao.ru

2. АРХИТЕКТУРА СИСТЕМЫ СБОРА

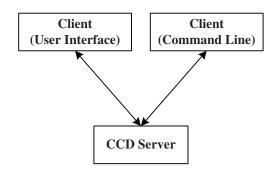
Проектирование программы выполнялось на основе анализа требований, которым она должна удовлетворять. В системе сбора были определены следующие основные функции:

- осуществление интерфейса между пользователем и ПЗС-системой;
- управление контроллером;
- получение и хранение данных;
- визуализация и анализ данных;
- настройка, телеметрия и диагностика ПЗСсистемы;
- тестирование фотоэлектрических характеристик ПЗС-системы.

Дополнительно система должна обеспечивать программное задание параметров накопления и считывания, в том числе:

- длительность экспозиции;
- управление затвором;
- очистка детектора перед процессом накопления заряда;
- скорость считывания изображения;
- номер выходного узла фотоприемника;
- размеры и координаты считываемого фрагмента:
- кратность биннинга по двум координатам;
- коэффициент усиления видеоканала;

 режим экспозиции (кадровый, комбинированный, сканирование).


Архитектура программы должна объединять требования конечного пользователя и технические требования через понимание вариантов использования с последующим нахождением путей их реализации [3].

Были сформулированы основные критерии качества, которым должна соответствовать архитектура системы сбора и управления:

- универсальность возможность адаптации к управлению матрицами различных типов, применяемых в астрономии, и взаимодействия с различными интерфейсами ввода цифровых данных;
- гибкость реализация всех режимов накопления и считывания, возможных для данного типа детектора, полная программируемость параметров управления детектором: уровней напряжений, временных разверток и температуры детектора, а также их телеметрический контроль;
- высокая производительность (быстродействие) минимизация времени считывания, записи, анализа и визуализации изображений, синхронизация потоков обмена данными, обеспечение эффективной работы оператора в процессе сбора данных и функционирование комплекса в режиме параллельно взаимодействующих задач;
- модифицируемость реализация различных методов наблюдений с возможностью подключения и управления из системы сбора внешними устройствами (затвор, фильтры);
- практичность создание единого интуитивно понятного пользовательского интерфейса с развитой структурой меню, диалоговых и графических окон, распределение функций по подсистемам, минимизация потоков данных между ними, возможность автоматизации наблюдений.

Предложенная архитектура для программного обеспечения (рис. 1) использует модель «клиент/сервер», которая удовлетворяет требованиям эффективности и надежности [4—6] в эксплуатации и имеет перспективы для дальнейшего развития системы в будущем. Сервер непосредственно взаимодействует с системой регистрации, однако управление осуществляется клиентами, которые могут подключаться к серверу.

Серверную и клиентскую части системы можно разместить на разных физических узлах, используя технологии сетевого программирования либо специальное промежуточное программное обеспечение для взаимодействия между ними. Для удобства назовем первый тип клиента графическим,

Рис. 1. Клиент-серверная архитектура системы управления.

второй — символьным. Функции, возлагаемые на серверную часть:

- инициализация ПЗС-системы, реализация различных режимов экспозиции;
- настройка, тестирование и диагностика ПЗСсистемы;
- взаимодействие с интерфейсной платой (адаптер Ethernet), синхронизация процессов приема и передачи сетевых пакетов стандарта IEEE 802.3;
- взаимодействие с клиентами, синхронизация процессов приема команд и передачи результатов их выполнения;
- формирование и запись файлов с изображениями.

Функции графического клиента:

- графический интерфейс пользователя;
- интерактивное управление ПЗС-системой;
- интерфейс для подключения и управления внешними устройствами (затвор, фильтры);
- задание различных методов наблюдений;
- задание и телеметрический контроль уровней напряжений и температуры детектора;
- интерактивное управление интерфейсной платой.

Функции символьного клиента:

 управление ПЗС-системой из командной строки либо из пакетного файла.

Визуализация изображений и редактирование временных диаграмм могут быть реализованы в отдельных приложениях и использоваться независимо от сервера и клиентов.

Уточним построенную архитектуру путем разбиения на модули (рис. 2). Здесь под модулем понимается набор классов и/или объектов, подсистем, зависимостей, операций, событий и ограничений, которые тесно взаимосвязаны и имеют достаточно

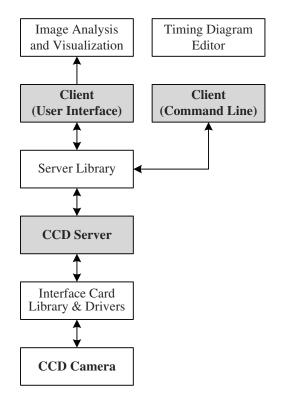


Рис. 2. Модульная архитектура системы управления.

хорошо определенный и по возможности небольшой интерфейс с другими модулями.

Для создания классов и объектов, описания процессов и архитектуры программного комплекса используется язык UML [7], обоснование такого выбора рассматривалось ранее в [8].

Рассмотрим подробно, как происходит обмен между сервером и ПЗС-контроллером. Необходимость обмена между управляющим процессом в хост-компьютере и прикладными процессами в контроллере делают принципы обмена во многом сходными с сетевыми. Для реализации интерфейса с ПЗС-системой используются четыре уровня сетевой модели обмена OSI [9]. Выбор необходимого количества уровней продиктован конфигурацией каналов передачи данных в ПЗС-системе, требованиями производительности и надежности. Верхний уровень (прикладной) обеспечивает независимый обмен сообщениями между различными процессами в контроллере и хост-компьютером. ССDсервер должен взаимодействовать с контроллером на двух уровнях — прикладном и транспортном. Физический и часть канального уровня реализуются аппаратно в сетевом адаптере. Иерархия сетевого интерфейса представлена на рис. 3. Обмен данными происходит по оптоволоконной линии связи через Ethernet-адаптер, используя низкоуровневую библиотеку для взаимодействия с драйверами сетевых интерфейсов WinPCAP.

На прикладном уровне процессы обмениваются между собой сообщениями. Сообщения, передаваемые от хост-компьютера к контроллеру, содержат команды асинхронного управления контроллером, которые могут включать в себя необходимые данные. В обратном направлении передаются сообщения, содержащие данные (в том числе информацию о состоянии контроллера) и запросы на обслуживание. Кроме асинхронных команд управления, контроллер также исполняет синхронные команды, которые передаются в него заранее в виде массива данных.

Команды асинхронного управления можно разделить на группы:

- команда опроса состояния;
- команды управления питанием и сброса;
- команды обмена массивами данных;
- команды запуска/остановки процессов в контроллере;
- команды синхронизации хост-компьютера и контроллера;
- команда асинхронного управления внешними устройствами.

Синхронные команды включают следующие группы:

- команды синхронного управления процессом накопления/переноса;
- команды синхронного управления процессом считывания;
- команды синхронного управления внешними устройствами;
- команды управления последовательностью выполнения команд.

На транспортном уровне компьютер и ПЗС-контроллер обмениваются пакетами (кадрами) стандарта IEEE 802.3 для сетей Ethernet. Интерфейс между транспортным и прикладным уровнями обеспечивают следующие команды:

- установить соединение (TransportConnect);
- разъединить соединение (TransportDisconnect);
- записать сообщение (TransportWriteMsg);
- прочитать сообщение (TransportReadMsg);
- прочитать информацию состояния транспортного уровня (TransportStatus);
- сброс транспортного уровня (TransportReset).

http://www.winpcap.org/docs/docs_412/

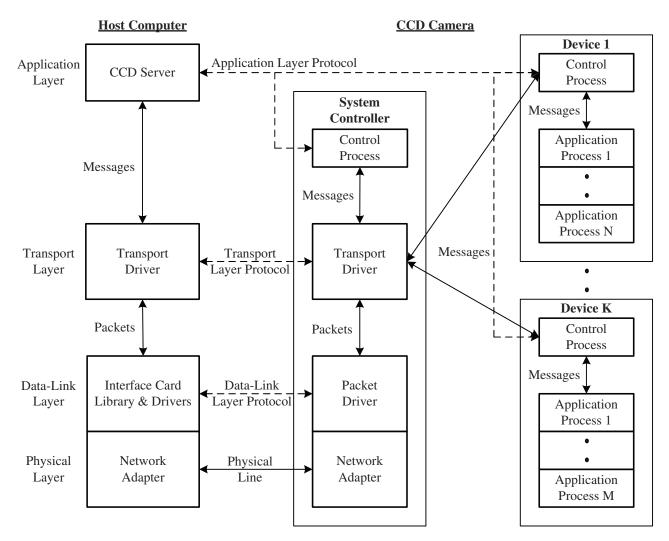


Рис. 3. Архитектура сетевых протоколов.

Так как клиенты и сервер — независимо работающие приложения, то необходимо выбрать механизм обмена данными между ними (IPC — interprocess communication). Используется очень простой в реализации способ потоковой передачи данных именованный канал (named pipe), т.е. выделенная линия передачи данных, соединяющая два процесса. Один из процессов создает канал, а другой его открывает, после чего оба процесса могут передавать данные через канал в одну или обе стороны, используя функции чтения и записи в файл. Этот способ позволяет организовать передачу данных как между локальными процессами, так и между процессами, запущенными на различных узлах сети. Команды от клиентов бывают двух типов: для взаимодействия только с сервером (информационные) и для взаимодействия с контроллером. Данные команд первого типа передаются через каналы C_PIPE_INFO (чтения) и S_PIPE_INFO (записи), второго — через каналы С_РІРЕ (чтения) и

S_PIPE (записи). Все каналы создаются сервером. Для синхронизации задач и межзадачного обмена информацией приложения используют семафоры, критические секции, мьютексы, очереди и сообщения.

Основной характеристикой ССD-сервера является его управляющее состояние, которое идентифицирует исполняющийся сегмент программы и соответствует текущему состоянию ПЗС-системы. При старте сервер находится в начальном состоянии (Standby). Всего в данной системе можно выделить шесть управляющих состояний (рис. 4). Переходы между состояниями осуществляются по командам от клиентов (setup, observe, stop, abort, run cmd).

3. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ И ВОЗМОЖНОСТИ СИСТЕМЫ

Разработанный комплекс программ функционирует в операционной среде Windows XP, имеет

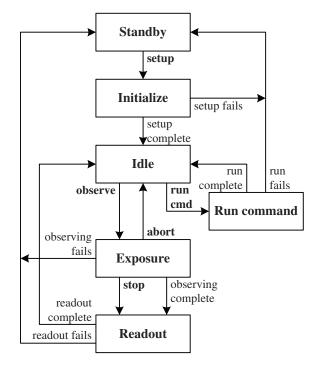
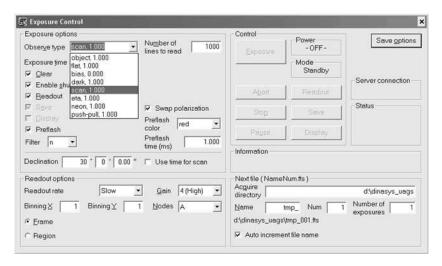


Рис. 4. Управляющие состояния ССО-сервера.

удобный, интуитивно понятный пользовательский интерфейс и развитую систему меню. Многомодульная и многозадачная архитектура позволяет астроному выполнять несколько задач одновременно, как в интерактивном, так и в автоматическом режиме. Графический клиент имеет следующие окна управления и телеметрии:

- Exposure Control для управления ПЗСсистемой;
- Тетрегаture для установки и телеметрии температуры детектора;
- Wave Levels для установки и телеметрии уровней напряжений детектора;
- Output Node Levels для установки и телеметрии уровней рабочих напряжений и токов выходных узлов детектора.


Диалоговое окно «Exposure Control» (рис. 5) позволяет эффективно управлять детектором, реализует разнообразные способы накопления и считывания изображений; обеспечивает задание параметров экспозиции. В нем задаются следующие параметры: тип экспозиции, длительность накопления, флаг очистки детектора перед накоплением, флаг использования затвора, номер фильтра, скорость считывания, кратность биннинга по двум координатам, коэффициент усиления видеоканала, выходные узлы приемника, размеры и координаты считываемого фрагмента, количество экспозиций, параметры визуализации и записи в файл. Здесь также выводится информация о ходе исполнения

команд, состояние питания и управляющее состояние контроллера. Прием цифровых изображений с разными скоростями считывания существенно сокращает время на подготовку системы к наблюдениям. После успешной инициализации ПЗС-системы можно начинать сбор данных. Запуск экспозиции производится после нажатия кнопки Exposure. После накопления данные оцифровываются, передаются в компьютер и записываются в файл на диске.

Наблюдателю доступны следующие типы экспозиций:

- bias сигнал считывается с матрицы и оцифровывается, время не отсчитывается и затвор не открывается;
- dark заряд накапливается в течение заданного времени, сигнал считывается с матрицы и оцифровывается, затвор не открывается;
- object накопление и считывание в кадровом режиме; открывается затвор, заряд накапливается в течение заданного времени, затвор закрывается, сигнал считывается с матрицы и оцифровывается;
- neon устанавливается заданный фильтр, включается лампа спектра сравнения, открывается затвор, заряд накапливается в течение заданного времени, затвор закрывается, лампа спектра сравнения выключается, сигнал считывается с матрицы и оцифровывается;
- scan накопление и считывание происходит в режиме дрейфового сканирования; открывается затвор, считывается первая строка данных матрицы и оцифровывается, через заданное время считывается следующая строка, и так последовательно считывается заданное количество строк, затвор закрывается; режим дрейфового сканирования позволяет выполнять длительное наблюдение объектов неба;
- push-pull режим комбинированного накопления и переноса [10]; дополнительно к стандартным параметрам экспозиции задаются время элементарной экспозиции, число переносов и число строк, на которое переносится изображение.

Благодаря встроенному в систему механизму расширения функциональности (plug-in-механизму), обеспечивается подключение к ПЗС-системе любых дополнительных устройств (турелей с фильтрами, лампы спектра сравнения и т.п.). Наличие развитого внутреннего макроязыка для программирования пакетного режима позволяет автоматизировать отдельные процессы управления накоплением, считыванием и визуализацией изображений. Также в системе реализованы:

Рис. 5. Диалоговое окно «Exposure Control».

- функция получения данных для расчета значения кванта преобразования и шума считывания видеоканалов;
- функция получения данных для построения спектра шумов видеоканалов с целью нахождения коэффициентов оптимального фильтра, используемого в видеоканале при цифровой обработке видеоданных в реальном времени;
- функция получения передаточной характеристики видеоканалов для ее последующей автоматической цифровой коррекции с целью стабилизации и линеаризации.

4. ЗАКЛЮЧЕНИЕ

Создана, внедрена и поддерживается система сбора данных для оптических наблюдений на БТА и Цейсс-1000. За время эксплуатации система показала свою актуальность и эффективность. Она обеспечивает получение данных, их запись, первичный анализ и визуализацию. Реализована важная задача системы сбора — обеспечение процесса автоматизации наблюдений и управления параметрами ПЗС-системы в процессе наблюдений.

БЛАГОДАРНОСТИ

Работа частично поддерживалась грантом РФФИ 08-07-12099 и программой ОФН РАН «Протяженные объекты во Вселенной». Автор благодарит всех сотрудников, принимавших участие в обсуждении данной работы. Наблюдения на 6-метровом телескопе БТА проводятся при финансовой поддержке Министерства образования и науки Российской Федерации (соглашение № 14.619.21.0004, идентификатор проекта RFMEFI61914X0004).

СПИСОК ЛИТЕРАТУРЫ

- 1. S. V. Markelov, V. A. Murzin, A. N. Borisenko, et al., Astron. Astrophys. Transactions 19, 579 (2000).
- 2. X. Гома *UML-проектирование* систем реального времени параллельных и распределенных приложений (МК Пресс, Москва, 2002).
- 3. Л. А. Мацяшек, Анализ требований и проектирование систем. Разработка информационных систем с использованием UML (Вильямс, Москва, 2002).
- 4. D. A. Menasce and H. Gomaa, IEEE Transactions on Software Engineering **26**, 1066 (2000).
- 5. M. Lesser and M. Parthasarathy, in *Scientific Detectors for Astronomy: The Beginning of a New Era*, Ed. by P. Amico, J. W. Beletic, and J. E. Beletic (Kluwer Academic Publishers, Dordrecht, 2004), p. 445.
- 6. M. Bonati and M. Ashe, in *Scientific Detectors for Astronomy: The Beginning of a New Era*, Ed. by P. Amico, J. W. Beletic and J. E. Beletic (Kluwer Academic Publishers, Dordrecht, 2004), p. 427.
- 7. М. Фаулер, К. Скотт, *UML в кратком изложении.* Применение стандартного языка объектного моделирования (Мир, Москва, 1999).
- 8. И. В. Афанасьева, Обозрение прикладной и промышленной математики **18** (1), 162 (2010).
- 9. ГОСТ Р ИСО/МЭК 7498-1-99, Информационная технология. Взаимосвязь открытых систем. Базовая эталонная модель (Издательство стандартов, Москва, 1999).
- 10. G. A. Chountonov, V. A. Murzin, N. G. Ivashchenko, and I. V. Afanasieva, in *Magnetic Fields of Chemically Peculiar and Related Stars*, Ed. by Yu. V. Glagolevskij and I. I. Romanyuk (2000), p. 249.

Data Acquisition and Control System for High-Performance Large-Area CCD Systems

I. V. Afanasieva

Astronomical CCD systems based on second-generation DINACON controllers were developed at the SAO RAS Advanced Design Laboratory more than seven years ago and since then have been in constant operation at the 6-meter and Zeiss-1000 telescopes. Such systems use monolithic large-area CCDs. We describe the software developed for the control of a family of large-area CCD systems equipped with a DINACON-II controller. The software suite serves for acquisition, primary reduction, visualization, and storage of video data, and also for the control, setup, and diagnostics of the CCD system.

Keywords: instrumentation: detectors—techniques: image processing