УДК 524.38:520.82

МОДЕЛИРОВАНИЕ КРИВОЙ БЛЕСКА И ЭВОЛЮЦИОННЫЙ СТАТУС КОРОТКОПЕРИОДИЧЕСКОЙ ДВОЙНОЙ СИСТЕМЫ 1SWASP J092328.76+435044

© 2018 М. М. Эльхатиб^{1,2}, М. И. Ноух^{1,2*}, Р. Мишель³, А. Харун^{1,4}, Е. Эльхоли^{1,2}

¹ Национальный исследовательский институт астрономии и геофизики, Каир, 11421 Египет

² Научный колледж, Университет северной границы, Арар, Саудовская Аравия

³ Институт астрономии, Национальный университет астрономии Мексики, Баха Калифорния, 22830

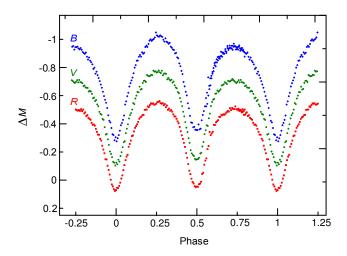
Мексика

⁴Университет короля Абдулазиза, Джидда, Саудовская Аравия Поступила в редакцию 12 февраля 2017 г.; принята в печать 28 декабря 2017 г.

Проведено моделирование полных фазовых кривых блеска в фильтрах BVR недавно обнаруженной сверхконтактной маломассивной системы типа W UMa 1SWASP J092328.76+435044. Для объяснения асимметрии кривых блеска была применена модель запятненной поверхности. Итоговая модель была получена с применением программы Вильсона—Девиннея. Показано, что более массивный компонент горячее менее массивного, с разницей температур приблизительно $\Delta T \sim 40~{\rm K}$. В сумме было получено шесть новых моментов минимума. На основе оценок физических параметров был исследован эволюционный статус компонентов системы.

Ключевые слова: двойные: тесные — звезды: индивидуальные: 1SWASP J092328.76+435044

1. ВВЕДЕНИЕ


Сверхконтактные двойные определяются как короткопериодические системы, имеющие верхний предел периода примерно 0.22 дня [1, 2]; соотношение период-цвет показывает, что более короткий период соответствует компонентам более позднего типа с меньшей яркостью [3]. Это означает, что обнаружить сверхконтактные двойные системы с периодом в 0.22 дня сложно. В результате анализа кривых блеска сверхконтактных двойных систем типа WUMa возможно получить информацию о свойствах этих звезд. Переменность кандидата в затменные двойные системы 1SWASP J092328.76+435044 (впоследствии будем называть его J0923) была впервые найдена в рамках проекта SuperWASP, посвященного наблюдению ярких ($V \approx 8-15$) звезд всего неба, в начале февраля 2012 г., наряду с несколькими десятками тысяч других объектов [4]. Объект Ј0923 классифицирован как короткопериодическая система типа W UMa $(P=0\overset{
m d}{.}2349,\,V_{
m max}=13\overset{
m m}{.}03)$ с разницей амплитуд первичного и вторичного компонентов 0.04 и 0^m03 соответственно [5]. Вычисления Лора и

др. [4, 6] показали значительное увеличение периода для этой системы, составляющее примерно $+1.90\pm0.95\,\mathrm{c}$ год $^{-1}$. В настоящей работе мы представляем продолжение программы, начатой ранее Эльхатибом и др. [7-12], по исследованию некоторых недавно обнаруженных затменных двойных. Представлен детальный анализ кривой блеска кандидата J0923, основанный на наших новых наблюдениях в фильтрах BVR и эволюционного статуса, найденного по предварительным оценкам физических параметров.

2. НАБЛЮДЕНИЯ

В сумме было получено 570 фотометрических ПЗС изображений J0923 в фильтрах BVR, полностью покрывающих весь период вращения звезды. Наблюдения проводились 21 марта 2016 г. на 84-см телескопе обсерватории Сан Педро Мартир (Мексика) с ПЗС-матрицей SI-Те4. Период системы J0923 был найден Нортоном и др. [5] и Лором и др. [4] как 0^d 21013 и 0^d 23487 соответственно. Разница между двумя значениями составляет 0^d 02474 (36 мин). Мы пробовали использовать оба значения периода при расчетах фотометрических фаз по наблюдаемым BVR кривым блеска, но оцененные значения фазы показывают сдвиг в обоих

^{*}E-mail: abdo_nouh@hotmail.com

Рис. 1. Кривые блеска J0923 в фильтрах BVR.

минимумах, что означает, что период нуждается в пересчете.

Была получена новая оценка периода P=0.42376. Этот период длиннее вычисленного ранее, а фотометрические фазы минимумов имеют нулевой сдвиг, как видно на рис. 1. Различные значения периода системы J0923, полученные с момента ее

обнаружения в 2010 г., могут создавать впечатление нестабильности периода, что требует непрерывных наблюдений и нескольких последующих минимумов для отслеживания и оценки возможных вариаций периода. Отдельные фазы, соответствующие каждой наблюдаемой точке, были вычислены с применением первой эфемериды, принятой по нашим наблюдениям:

$$Min I = 2457468.7316 + 0.2376 \times E. \tag{1}$$

Была проведена дифференциальная фотометрия, где объект 2MASSJ09240120+4350218 использовался в качестве звезды сравнения, а 2MASSJ09232921+4355371 — опорной звезды. Соответствующие кривые блеска BVR показаны на рис. 1; они характерны для объектов EW-типа своим проявлением очевидной асимметрии. Исходные данные приводятся в таблице 1.

С помощью пакета программ Minima V2.3 http://members.shaw.ca/bob.nelson/software1. htm были получены шесть новых моментов минимума (три основных и три вторичных, каждый в одном из фильтров B, V и R) на основе метода Кви и Ван Вордена [13]; они приведены в таблице 2. Первая эфемерида было определена по имеющимся минимумам.

Таблица 1. Наблюдательные кривые блеска в фильтрах BVR для затменной двойной системы J0923

JD	Фаза	ΔB	JD	Фаза	ΔV	JD	Фаза	ΔR
2457468.6733	0.7545	-0.6951	2457468.6727	0.7519	-0.6984	2457468.6722	0.7502	-0.7515
2457468.6748	0.7610	-0.6977	2457468.6743	0.7586	-0.7101	2457468.6700	0.7569	-0.7467
2457468.6764	0.7675	-0.6856	2457468.6758	0.7651	-0.6943	2457468.6754	0.7634	-0.7434
2457468.6779	0.7740	-0.6783	2457468.6774	0.7717	-0.7114	2457468.6769	0.7699	-0.7485
2457468.6795	0.7805	-0.6878	2457468.6789	0.7782	-0.6959	2457468.6785	0.7764	-0.7407
2457468.6810	0.7870	-0.6753	2457468.6805	0.7847	-0.6939	2457468.6800	0.7830	-0.7541
2457468.6826	0.7936	-0.6596	2457468.6820	0.7912	-0.6888	2457468.6816	0.7895	-0.7406
2457468.6841	0.8001	-0.6518	2457468.6836	0.7978	-0.6674	2457468.6831	0.7960	-0.7511
2457468.6857	0.8067	-0.6469	2457468.6851	0.8043	-0.6723	2457468.6847	0.8025	-0.7239
2457468.6872	0.8132	-0.6564	2457468.6867	0.8108	-0.6585	2457468.6862	0.8091	-0.7312
2457468.6888	0.8197	-0.6260	2457468.6882	0.8174	-0.6555	2457468.6878	0.8156	-0.7055
2457468.6903	0.8262	-0.6060	2457468.6898	0.8239	-0.6549	2457468.6894	0.8222	-0.7112
2457468.6919	0.8328	-0.6206	2457468.6913	0.8305	-0.6292	2457468.6909	0.8287	-0.6925
2457468.6934	0.8394	-0.5976	2457468.6929	0.8370	-0.6342	2457468.6925	0.8353	-0.6850
2457468.6950	0.8459	-0.5873	2457468.6944	0.8436	-0.6295	2457468.6940	0.8418	-0.6785
2457468.6966	0.8527	-0.5719	2457468.6960	0.8501	-0.6123	2457468.6956	0.8483	-0.6569
2457468.6982	0.8592	-0.5397	2457468.6976	0.8569	-0.5809	2457468.6972	0.8551	-0.6429
2457468.6997	0.8658	-0.5482	2457468.6992	0.8634	-0.5860	2457468.6987	0.8617	-0.6450

Таблица 1. (Продолжение)

JD	Фаза	ΔB	JD	Фаза	ΔV	JD	Фаза	ΔR
2457468.7013	0.8725	-0.5061	2457468.7007	0.8700	-0.5615	2457468.7003	0.8682	-0.6366
2457468.7029	0.8791	-0.5203	2457468.7023	0.8767	-0.5693	2457468.7019	0.8750	-0.6136
2457468.7044	0.8856	-0.4951	2457468.7039	0.8833	-0.5375	2457468.7035	0.8815	-0.5929
2457468.7060	0.8922	-0.4753	2457468.7054	0.8898	-0.5250	2457468.7050	0.8881	-0.5735
2457468.7075	0.8987	-0.4533	2457468.707	0.8964	-0.4848	2457468.7066	0.8946	-0.5717
2457468.7091	0.9053	-0.4289	2457468.7085	0.9029	-0.4707	2457468.7081	0.9012	-0.5432
2457468.7107	0.9118	-0.4060	2457468.7101	0.9095	-0.4650	2457468.7097	0.9077	-0.5311
2457468.7123	0.9186	-0.3773	2457468.7117	0.916	-0.4346	2457468.7112	0.9143	-0.4943
2457468.7138	0.9251	-0.3467	2457468.7133	0.9228	-0.4279	2457468.7128	0.9210	-0.4669
2457468.7154	0.9317	-0.3201	2457468.7148	0.9293	-0.3761	2457468.7144	0.9276	-0.4406
2457468.7169	0.9382	-0.2993	2457468.7164	0.9359	-0.3237	2457468.7159	0.9341	-0.3981
2457468.7185	0.9448	-0.2621	2457468.7179	0.9424	-0.3278	2457468.7175	0.9407	-0.3974
2457468.7200	0.9513	-0.2103	2457468.7195	0.949	-0.2893	2457468.7191	0.9472	-0.3520
2457468.7216	0.9579	-0.1711	2457468.721	0.9555	-0.2498	2457468.7206	0.9538	-0.3220
2457468.7232	0.9644	-0.1595	2457468.7226	0.9621	-0.2030	2457468.7222	0.9603	-0.2897
2457468.7247	0.9710	-0.1201	2457468.7242	0.9686	-0.1858	2457468.7237	0.9669	-0.2527
2457468.7263	0.9775	-0.0759	2457468.7257	0.9752	-0.1629	2457468.7253	0.9734	-0.2186
2457468.7278	0.9840	-0.0702	2457468.7273	0.9817	-0.1299	2457468.7268	0.9800	-0.2046
2457468.7294	0.9905	-0.0335	2457468.7288	0.9882	-0.1237	2457468.7284	0.9865	-0.1854
2457468.7309	0.9971	-0.0542	2457468.7304		-0.1036	2457468.7299	0.9930	-0.1725
2457468.7325	0.0036	-0.0253	2457468.7319	0.0013	-0.1241	2457468.7315	0.9995	-0.1794
2457468.7340	0.0101	-0.0472	2457468.7334	0.0078	-0.1125	2457468.7330		-0.1954
2457468.7356	0.0167	-0.0698	2457468.735	0.0143	-0.1445	2457468.7346	0.0126	-0.1928
2457468.7371	0.0232	-0.1010	2457468.7366		-0.1312	2457468.7361		-0.2083
2457468.7387			2457468.7381		-0.1710	2457468.7377		-0.2318
			2457468.7397			2457468.7392		
			2457468.7412			2457468.7408		
			2457468.7428		-0.2691	2457468.7423		
			2457468.7443			2457468.7439		
			2457468.7459		-0.3335	2457468.7455		
2457468.7480			2457468.7474		-0.3651	2457468.7470		-0.4172
2457468.7495			2457468.749	0.0732	-0.3962	2457468.7486		
2457468.7511			2457468.7505		-0.4380	2457468.7501		
2457468.7527			2457468.7521			2457468.7517		
2457468.7542			2457468.7537		-0.4757	2457468.7532		
2457468.7558			2457468.7552		-0.5009	2457468.7548		
2457468.7570	0.1083	-0.5091	2457468.7568	0.106	-0.5471	2457468.7564	0.1042	-0.5672

Таблица 1. (Продолжение)

JD	Фаза	ΔB	JD	Фаза	ΔV	JD	Фаза	ΔR
2457468.7589	0.1149	-0.5487	2457468.7583	0.1125	-0.5395	2457468.7579	0.1108	-0.5957
2457468.7605	0.1214	-0.5667	2457468.7599	0.1191	-0.5797	2457468.7595	0.1173	-0.6210
2457468.7620	0.1280	-0.5979	2457468.7615	0.1256	-0.6001	2457468.7610	0.1239	-0.6339
2457468.7636	0.1346	-0.5993	2457468.763	0.1322	-0.6260	2457468.7626	0.1304	-0.6466
2457468.7651	0.1411	-0.6258	2457468.7646	0.1388	-0.6240	2457468.7642	0.1370	-0.6627
2457468.7667	0.1477	-0.6387	2457468.7661	0.1454	-0.6637	2457468.7657	0.1435	-0.6850
2457468.7683	0.1543	-0.6265	2457468.7677	0.1519	-0.6428	2457468.7673	0.1502	-0.6960
2457468.7698	0.1608	-0.6576	2457468.7693	0.1585	-0.6476	2457468.7688	0.1567	-0.7004
2457468.7714	0.1674	-0.6474	2457468.7708	0.1651	-0.6904	2457468.7704	0.1633	-0.7113
2457468.7729	0.1740	-0.6545	2457468.7724	0.1717	-0.7047	2457468.7720	0.1699	-0.7136
2457468.7745	0.1806	-0.6950	2457468.774	0.1783	-0.7061	2457468.7735	0.1765	-0.7489
2457468.7761	0.1872	-0.7043	2457468.7755	0.1848	-0.6967	2457468.7751	0.1830	-0.7503
2457468.7776	0.1938	-0.6960	2457468.7771	0.1915	-0.7467	2457468.7767	0.1896	-0.7512
2457468.7792	0.2003	-0.7167	2457468.7786	0.198	-0.7406	2457468.7782	0.1962	-0.7736
2457468.7808	0.2069	-0.7407	2457468.7802	0.2046	-0.7376	2457468.7798	0.2028	-0.7689
2457468.7823	0.2134	-0.7504	2457468.7818	0.2111	-0.7399	2457468.7813	0.2094	-0.7834
2457468.7839	0.2201	-0.7394	2457468.7833	0.2177	-0.7481	2457468.7829	0.2159	-0.7954
2457468.7855	0.2266	-0.7468	2457468.7849	0.2243	-0.7457	2457468.7845	0.2225	-0.7917
2457468.7870	0.2332	-0.7525	2457468.7865	0.2309	-0.7774	2457468.7860	0.2291	-0.7949
2457468.7886	0.2398	-0.7636	2457468.788	0.2375	-0.7704	2457468.7876	0.2357	-0.7851
2457468.7902	0.2464	-0.7984	2457468.7896	0.2441	-0.7731	2457468.7892	0.2423	-0.7884
2457468.7917	0.2530	-0.7780	2457468.7912	0.2506	-0.7638	2457468.7907	0.2489	-0.7933
2457468.7933	0.2596	-0.7709	2457468.7927	0.2573	-0.7675	2457468.7923	0.2555	-0.8044
2457468.7948	0.2661	-0.7682	2457468.7943	0.2638	-0.7787	2457468.7939	0.2621	-0.8050
2457468.7964	0.2727	-0.7782	2457468.7959	0.2704	-0.7662	2457468.7954	0.2686	-0.8115
2457468.7980	0.2793	-0.7717	2457468.7974	0.2769	-0.7606	2457468.7970	0.2752	-0.7967
2457468.7995			2457468.799	0.2835	-0.7770	2457468.7985	0.2817	-0.7925
2457468.8011						2457468.8001		
			2457468.8021					-0.7816
2457468.8042	0.3056		2457468.8037					-0.7898
2457468.8058			2457468.8052			2457468.8048		-0.7672
2457468.8073			2457468.8068					
2457468.8089			2457468.8083			2457468.8079		
2457468.8105			2457468.8099					-0.7579
2457468.8120			2457468.8115			2457468.8110		
2457468.8136			2457468.813	0.3426		2457468.8126		-0.7477
2457468.8152	0.3516	-0.6776	2457468.8146	0.3493	-0.6921	2457468.8142	0.3475	-0.7360

Таблица 1. (Продолжение)

JD	Фаза	ΔB	JD	Фаза	ΔV	JD	Фаза	ΔR
2457468.8167	0.3583	-0.6740	2457468.8162	0.3559	-0.7004	2457468.8157	0.3541	-0.7173
2457468.8183	0.3648	-0.6498	2457468.8177	0.3625	-0.6734	2457468.8173	0.3607	-0.7025
2457468.8199	0.3715	-0.6538	2457468.8193	0.3691	-0.6581	2457468.8189	0.3673	-0.7019
2457468.8214	0.3780	-0.6220	2457468.8209	0.3757	-0.6525	2457468.8204	0.3739	-0.6852
2457468.8230	0.3847	-0.6155	2457468.8224	0.3823	-0.6251	2457468.8220	0.3805	-0.6674
2457468.8246	0.3913	-0.5790	2457468.824	0.3889	-0.6173	2457468.8236	0.3871	-0.6540
2457468.8261	0.3979	-0.5594	2457468.8256	0.3955	-0.5831	2457468.8251	0.3937	-0.6274
2457468.8277	0.4045	-0.5255	2457468.8272	0.4022	-0.5565	2457468.8267	0.4003	-0.5966
2457468.8293	0.4111	-0.5030	2457468.8287	0.4087	-0.5250	2457468.8283	0.4070	-0.5681
2457468.8309	0.4177	-0.4470	2457468.8303	0.4154	-0.4855	2457468.8299	0.4136	-0.5427
2457468.8324	0.4244	-0.4159	2457468.8319	0.422	-0.4526	2457468.8314	0.4202	-0.5146
2457468.8340	0.4310	-0.3769	2457468.8334	0.4286	-0.4123	2457468.8330	0.4268	-0.4862
2457468.8356	0.4376	-0.3516	2457468.835	0.4352	-0.3724	2457468.8346	0.4334	-0.4414
2457468.8371	0.4442	-0.2956	2457468.8366	0.4419	-0.3412	2457468.8362	0.4400	-0.4089
2457468.8387	0.4509	-0.2602	2457468.8382	0.4484	-0.2976	2457468.8377	0.4467	-0.3641
2457468.8403	0.4574	-0.2061	2457468.8397	0.4551	-0.2646	2457468.8393	0.4533	-0.3170
2457468.8419	0.4641	-0.1599	2457468.8413	0.4617	-0.2129	2457468.8409	0.4599	-0.2929
2457468.8434	0.4707	-0.1565	2457468.8429	0.4683	-0.1896	2457468.8425	0.4665	-0.2601
2457468.8450	0.4773	-0.1253	2457468.8444	0.4749	-0.1785	2457468.8440	0.4732	-0.2368
2457468.8466	0.4839	-0.1285	2457468.846	0.4815	-0.1707	2457468.8456	0.4797	-0.2260
2457468.8481	0.4905	-0.1078	2457468.8476	0.4881	-0.1503	2457468.8472	0.4863	-0.2071
2457468.8497	0.4971	-0.1059	2457468.8491	0.4947	-0.1446	2457468.8487	0.4929	-0.1993
2457468.8513	0.5037	-0.1056	2457468.8507	0.5013	-0.1487	2457468.8503	0.4995	-0.2037
2457468.8528	0.5102	-0.1451	2457468.8523	0.5079	-0.1493	2457468.8519	0.5061	-0.2023
2457468.8544	0.5169	-0.1105	2457468.8538	0.5145	-0.1589	2457468.8534	0.5127	-0.2201
2457468.8560	0.5234	-0.1153	2457468.8554	0.5211	-0.1883	2457468.8550	0.5193	-0.2244
2457468.8575	0.5301	-0.1749	2457468.857	0.5277	-0.1944	2457468.8565	0.5259	-0.2382
2457468.8591	0.5366	-0.2127	2457468.8585	0.5343	-0.2392	2457468.8581	0.5325	-0.2937
2457468.8607	0.5433	-0.2403	2457468.8601	0.5409		2457468.8597		-0.3016
2457468.8623	0.5499	-0.2742	2457468.8617	0.5476	-0.3262	2457468.8613	0.5457	-0.3598
2457468.8638	0.5565		2457468.8633			2457468.8628		-0.3887
2457468.8654	0.5632		2457468.8649			2457468.8644		
2457468.8670	0.5698		2457468.8664	0.5674		2457468.8660		
2457468.8686				0.5741		2457468.8676		
2457468.8701			2457468.8696			2457468.8692		
2457468.8717			2457468.8711			2457468.8707		-0.5699
2457468.8733	0.5963	-0.5179	2457468.8727	0.5939	-0.5549	2457468.8723	0.5921	-0.5824

JD	Фаза	ΔB	JD	Фаза	ΔV	JD	Фаза	ΔR
2457468.8748	0.6029	-0.5462	2457468.8743	0.6005	-0.5710	2457468.8739	0.5987	-0.5938
2457468.8764	0.6095	-0.5819	2457468.8759	0.6071	-0.5771	2457468.8754	0.6054	-0.6420
2457468.8780	0.6161	-0.5868	2457468.8774	0.6137	-0.6137	2457468.8770	0.6119	-0.6417
2457468.8796	0.6227	-0.6081	2457468.879	0.6203	-0.6149	2457468.8786	0.6186	-0.6609
2457468.8811	0.6293	-0.6241	2457468.8806	0.627	-0.6361	2457468.8801	0.6251	-0.6684
2457468.8827	0.6359	-0.6265	2457468.8821	0.6335	-0.6272	2457468.8817	0.6318	-0.6760
2457468.8843	0.6425	-0.6117	2457468.8837	0.6402	-0.6349	2457468.8833	0.6384	-0.6999
2457468.8858	0.6491	-0.6619	2457468.8853	0.6468	-0.6452	2457468.8849	0.6450	-0.6983
2457468.8874	0.6558	-0.6577	2457468.8869	0.6534	-0.6724	2457468.8864	0.6516	-0.7134
2457468.8890	0.6623	-0.6477	2457468.8884	0.66	-0.6750	2457468.8880	0.6582	-0.7104
2457468.8906	0.6690	-0.6489	2457468.89	0.6666	-0.6813	2457468.8896	0.6648	-0.7183
2457468.8921	0.6756	-0.6803	2457468.8916	0.6732	-0.6954	2457468.8911	0.6715	-0.7140
2457468.8937	0.6823	-0.6623	2457468.8931	0.6799	-0.6902	2457468.8927	0.6781	-0.7236
2457468.8953	0.6889	-0.7026	2457468.8947	0.6865	-0.6820	2457468.8943	0.6848	-0.7320
2457468.8969	0.6956	-0.6847	2457468.8963	0.6932	-0.7052	2457468.8959	0.6914	-0.7408
2457468.8985	0.7022	-0.7052	2457468.8979	0.6999	-0.7000	2457468.8975	0.6980	-0.7362
2457468.9000	0.7089	-0.6862	2457468.8995	0.7065	-0.7034	2457468.8990	0.7047	-0.7608
2457468.9016	0.7155	-0.6852	2457468.9011	0.7132	-0.7086	2457468.9006	0.7114	-0.7471
2457468.9032	0.7222	-0.7036	2457468.9026	0.7198	-0.7182	2457468.9022	0.7180	-0.7620
2457468.9048	0.7289	-0.7188	2457468.9042	0.7265	-0.7100	2457468.9038	0.7247	-0.7550

Таблица 1. (Продолжение)

Таблица 2. Новые расчетные моменты минимумов для затменной двойной J0923

HJD	Погрешность	Минимум	Фильтр
2457468.7314	0.0002	I	B
2457468.7316	0.0001	I	V
2457468.7313	0.0002	I	R
2457468.8499	0.0002	II	B
2457468.8496	0.0001	II	V
2457468.8497	0.0001	II	R

Разности амплитуд блеска между двумя максимумами (эффект О'Коннелла) ($D_{\max} = \operatorname{Max} \operatorname{I} - \operatorname{Max} \operatorname{II}$) и минимумами ($D_{\min} = \operatorname{Min} \operatorname{I} - \operatorname{Min} \operatorname{II}$) для наблюдаемых кривых были измерены и приведены в таблице 3 вместе с глубинами основных ($A_p = \operatorname{Max} \operatorname{I} - \operatorname{Min} \operatorname{I}$) и вторичных ($A_s = \operatorname{Max} \operatorname{I} - \operatorname{Min} \operatorname{II}$) минимумов. Вычисленные значения представляют собой разность между

двумя максимумами на кривой блеска в фильтрах BVR, которая часто возникает вследствие наличия пятен на поверхности звезды [4].

3. ФОТОМЕТРИЧЕСКОЕ РЕШЕНИЕ

Наблюдаемые кривые блеска BVR для системы J0923 были подвергнуты фотометрическому анализу программы Вильсона и Девиннея (W-D) ¹ в версии 2009 г., которая основана на моделях атмосфер Куруца [14]. Первоначальное значение температуры основной звезды (T_1) было оценено с помощью показателя цвета (B-V)=0.987, что примерно соответствует спектральному классу K3, исходя из соотношения цвет—температура из работы Токунаги [15], и составила $T_1=4686$ K.

Коэффициенты гравитационного потемнения $g_1=g_2=0.32$ [16] и болометрического альбедо $A_1=A_2=0.5$ [17] были взяты для конвективных оболочек ($T_{\rm eff}<7500$ K). Коэффициенты болометрического потемнения к краю ($x_1=x_2,\ y_1=y_2$)

http://members.shaw.ca/bob.nelson/software1.htm

Таблица 3. Характерные параметры наблюдаемых BVR кривых блеска затменной двойной J0923

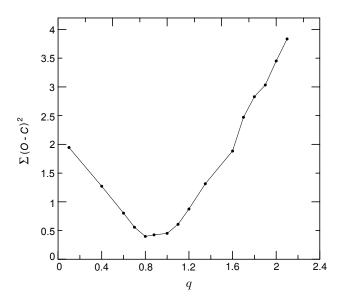
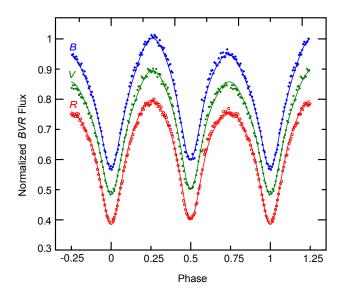

Параметр	В	V	R
$D_{ m max}$ (Max I–Max II)	0.050 ± 0.002	0.045 ± 0.002	0.035 ± 0.001
$D_{\min}\left(\operatorname{Min}\operatorname{I-Min}\operatorname{II}\right)$	-0.035 ± 0.001	-0.020 ± 0.001	0.025 ± 0.001
$A_p = (\operatorname{Min} \operatorname{I-Max} \operatorname{I})$	-0.450 ± 0.018	-0.415 ± 0.017	-0.365 ± 0.015
$A_s = (Min II - Max)$	-0.365 ± 0.015	-0.350 ± 0.014	-0.355 ± 0.015

Таблица 4. Фотометрическое решение для ${
m J}0923$ в фильтрах ${\it BVR}$


—————————————————————————————————————	Φ ильтр B	Φ ильтр V	Φ ильтр R	BVR
Центральная длина волны, Å	4400	5500	7000	_
i	74.96 ± 0.20	74.85 ± 0.19	75.39 ± 0.16	74.79 ± 0.19
$g_1 = g_2$	0.50	0.50	0.50	0.50
$A_1 = A_2$	0.32	0.32	0.32	0.32
$Q = (M_2/M_1)$	0.8732 ± 0.0025	0.8757 ± 0.0026	0.8786 ± 0.0017	0.8752 ± 0.0023
Ω	3.5285 ± 0.0052	3.5229 ± 0.0062	3.5498 ± 0.1449	3.5366 ± 0.0061
$\Omega_{ m in}$	3.5408	3.5449	3.5498	3.5442
$\Omega_{ m out}$	3.0558	3.0587	3.0623	3.0583
T_1 , K	4690 Фикс.	4690 Фикс.	4690 Фикс.	4690 Фикс.
T_2 , K	4635 ± 2	4641 ± 2	464 ± 2	4640 ± 2
$L_1/(L_1+L_2)$	0.5477 ± 0.0224	0.0526 ± 0.0022	0.5394 ± 0.0220	_
$L_2/(L_1+L_2)$	0.4523 ± 0.0185	0.9475 ± 0.0387	0.4606 ± 0.0188	_
r_1 полюс	0.3679 ± 0.0009	0.3702 ± 0.0018	0.3670 ± 0.0031	0.3683 ± 0.0028
r_1 сторона	0.3872 ± 0.0011	0.3900 ± 0.0023	0.3861 ± 0.0039	0.3877 ± 0.0035
r_1 тыл	0.4179 ± 0.0016	0.4218 ± 0.0035	0.4166 ± 0.0058	0.4186 ± 0.0052
r_2 полюс	0.3453 ± 0.0009	0.3480 ± 0.0019	0.3454 ± 0.0033	0.3461 ± 0.0030
r_2 сторона	0.3622 ± 0.0011	0.3654 ± 0.0024	0.3622 ± 0.0041	0.3631 ± 0.0037
r_2 тыл	0.3938 ± 0.0017	0.3983 ± 0.0037	0.3936 ± 0.0061	0.3949 ± 0.0056
Параметры пятен для звезды 1				
Доп. широта, градусы	100 Фикс.	100 Фикс.	100 Фикс.	100 Фикс.
Долгота, градусы	120 Фикс.	120 Фикс.	120 Фикс.	120 Фикс.
Радиус пятна, градусы	23.630 ± 0.465	22.500 ± 0.919	27 ± 1.10	22.29 ± 0.737
Темп. фактор	1.099 ± 0.002	1.080 ± 0.044	1.060 ± 0.043	1.089 ± 0.003
Параметры пятен для звезды 2				
Доп. широта, градусы	140 Фикс.	140 Фикс.	140 Фикс.	140 Фикс.
Долгота , градусы	80 Фикс.	75 Фикс.	85 Фикс.	75 Фикс.
Радиус пятна, градусы	27 ± 1.102	27 ± 1.102	29 ± 1.184	27 ± 0.131
Темп. фактор	1.333 ± 0.004	1.330 ± 0.054	1.330 ± 0.05	1.31 ± 0.005
$\sum (O-C)^2$	0.00736	0.00786	0.00640	0.08279

Компонент	M, M_{\odot}	R, R_{\odot}	T,T_{\odot}	L,L_{\odot}	$M_{ m bol}$	Сп. класс	$\lg g, (\text{CGS})$
Главный	0.73 ± 0.03	0.82 ± 0.03	0.81 ± 0.03	0.29 ± 0.01	6.10 ± 0.25	К3	4.52
Вторичный	0.64 ± 0.03	0.81 ± 0.03	0.80 ± 0.03	0.27 ± 0.01	6.17 ± 0.25	КЗ	4.52

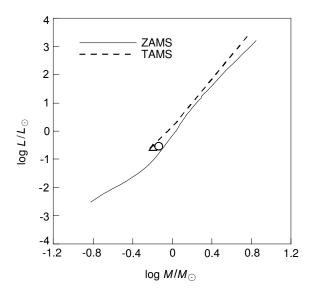
Таблица 5. Окончательные физические параметры для системы J0923

Рис. 2. Поиск q для системы J0923.

Рис. 3. Наблюдаемые (заполненные кружки) и синтетические (сплошные линии) кривые блеска.

были взяты и интерполированы с помощью метода наименьших квадратов из работы Ван Хамме [18]. Свободные параметры в решении кривой блеска следующие: наклонение орбиты (i); средняя температура вторичного компонента (T_2) ; поверхностный потенциал (Ω) и монохроматическая светимость

главной звезды (L_1) . Относительная яркость вторичного компонента была вычислена из модели звездных атмосфер.


Так как для системы J0923 нет опубликованной кривой лучевых скоростей, то нет и уверенной оценки отношения масс (q). Мы провели поиск данного параметра для оценки наилучшего начального значения отношения масс (q) для J0923. На рис. 2 представлено соотношение между итоговой суммой взвешенных среднеквадратичных отклонений $\Sigma(O-C)^2$ и (q). $\Sigma(O-C)^2$ достигает минимума при 0.8. Это значение было принято как начальное значение для искомого соотношения масс. Разностная поправка высчитывалась для (q) до тех пор, пока все свободные параметры не сошлись и не был получен набор решений. Итоговое значение (q) для сходящихся решений приведено в таблице 4.

Мы применили режим три (сверхконтакт) в предположении синхронного вращения и круговой орбиты. Некоторые параметры были зафиксированы (T_1, g, A, x) . Изначально мы искали модельное решение без пятен (в статье не приводится); данное решение не показало хорошей корреляции с наблюдаемыми кривыми блеска. Вследствие упомянутой выше асимметрии в наблюдаемых кривых блеска. Видно, что наблюдаемые кривые блеска имеют асимметрию, где наблюдаемая величина между фазами 0.1 и 0.3 ярче интервала 0.7-0.9, что можно объяснить эффектом О'Коннелла. Для построения теоретических кривых блеска, соответствующих наблюдаемым, мы предположили модель с горячими пятнами, что делает двойную систему ярче со стороны, обращенной к наблюдателю. Мы взяли модель с двумя пятнами — одно на главной, другое на вторичной звезде, что показало хорошее соответствие между наблюдаемыми и синтетическими кривыми блеска. Параметры принятой модели перечислены в таблице 4; они показывают, что оба компонента системы J0923 принадлежат спектральному классу ҚЗ [19], и что главный компонент горячее вторичного примерно на $\Delta T \approx 40$ K. На рис. 3 показаны наблюдаемые кривые блеска вместе с синтетическими кривыми в полосе BVR.

Окончательные физические параметры обоих компонентов системы J0923 вычислены из эмпирического соотношения « $T_{\rm eff}$ —масса» из работы Харманека [20] (см. таблицу 5). Оценка массы главного

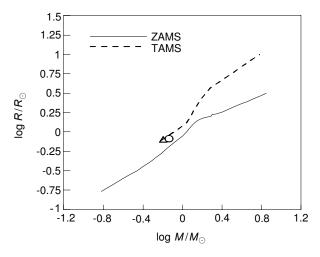


Рис. 4. Геометрическая структура двойной системы J0923.

Рис. 5. Положение компонентов системы J0923 на диаграмме соотношения масса—светимость [22].

компонента $M_1=(0.7303\pm0.0298)\,M_\odot$, масса вторичного компонента — $M_2=(0.6392\pm0.0261)\,M_\odot$. Получены радиусы компонентов системы $R_1(R_\odot)$, $R_2(R_\odot)$ и болометрические величины ($M_{\rm bol}$). Ясно, что принятое фотометрическое решение и оцененные физические параметры показывают, что главный компонент горячее и массивнее вторичного. Трехмерная геометрическая структура системы 10923 построена (как показано на рис. 4) с помо-

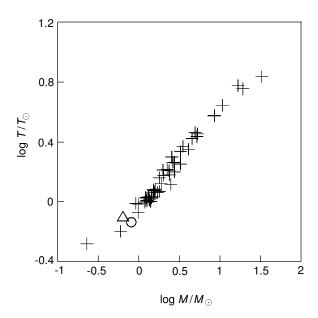


Рис. 6. Положение компонентов системы J0923 на диаграмме соотношения масса—радиус [22].

щью пакета программ Binary Maker 3.03 [21] на основе параметров, вычисленных по нашей модели.

4. ОБСУЖДЕНИЕ И ЗАКЛЮЧЕНИЕ

Были проведены новые ПЗС-наблюдения в фильтрах BVR недавно обнаруженной системы типа WUMa J0923. В сумме было вычислено восемь новых моментов минимумов (четыре первичных и четыре вторичных) в каждом фильтре с помощью метода Кви и Ван Вордена [13]. Период

Рис. 7. Положение компонентов системы J0923 на диаграмме соотношения масса—температура [23].

системы был обновлен с учетом наших наблюдений, и начальная эфемерида была рассчитана с учетом новых минимумов и нового периода.

Моделирование кривых блеска проводилось с использованием полного набора кривых блеска в программе W-D; оно показало, что система J0923 является сверхконтактной двойной. Асимметричные кривые блеска могут быть объяснены в рамках запятненной модели с двумя горячими пятнами. Были получены оценки элементов орбиты, из которых следует, что главный компонент более массивный и горячее вторичного примерно на $\Delta T \sim 40~\mathrm{K}$.

Согласно принятым температурам для главного (T_1) и вторичного (T_2) компонентов обе звезды относятся к спектральному классу КЗ [19]. Итоговые физические параметры были вычислены и использованы для определения эволюционной стадии компонентов исследуемой системы. Мы использовали предварительные физические параметры компонентов системы J0923, приведенные в таблице 5, для изучения эволюции системы. Для этой цели мы воспользовались соотношениями масса—светимость (M-L) и масса—радиус (M-R)для главной последовательности нулевого возраста (ZAMS) и главной последовательности терминального возраста (TAMS) с металличностью z == 0.019 [22]. На рис. 5 и 6 показаны соотношения M-L и M-R для компонентов системы J0923. Исходя из этих рисунков, главный и вторичный компоненты находятся выше ZAMS, что указывает на то, что компоненты являются проэволюционировавшими звездами.

На рис. 7 мы сравниваем полученные физические параметры с соотношением масса $-T_{
m eff}$ для

звезд малых и средних масс на основе данных для разделенных затменных двойных систем с двойными линиями из работы Mалкова [23]. Положения двух компонентов демонстрируют то же поведение, что и соотношения M-L и M-R, с небольшим отклонением у вторичного компонента. Для последующего исследования поведения переменности, уточнения значения отношения масс и эволюции системы требуются новые фотометрические и спектральные наблюдения системы 10923.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. M. Rucinski, Astron. J. 103, 960 (1992).
- 2. S. M. Rucinski, Monthly Notices Royal Astron. Soc. **382**, 393 (2007).
- 3. L.-Q. Jiang, S.-B. Qian, L.-Y. Zhu, et al., New Astronomy **41**, 22 (2015).
- 4. M. E. Lohr, A. J. Norton, U. C. Kolb, et al., Astron. and Astrophys. **542**, A124 (2012).
- A. J. Norton, S. G. Payne, T. Evans, et al., Astron. and Astrophys. 528, A90 (2011).
- M. E. Lohr, A. J. Norton, U. C. Kolb, et al., Astron. and Astrophys. 549, A86 (2013).
- M. M. Elkhateeb, M. I. Nouh, S. M. Saad, and I. Zaid, New Astronomy 32, 10 (2014).
- 8. M. M. Elkhateeb, S. M. Saad, M. I. Nouh, and A. Shokry, New Astronomy 28, 85 (2014).
- 9. M. M. Elkhateeb, M. I. Nouh, and S. M. Saad, New Astronomy **26**, 102 (2014).
- 10. M. M. Elkhateeb and M. I. Nouh, New Astronomy **34**, 47 (2015).
- 11. M. M. Elkhateeb, M. I. Nouh, and R. H. Nelson, New Astronomy **35**, 1 (2015).
- M. M. Elkhateeb and M. I. Nouh, New Astronomy 49, 22 (2016).
- 13. K. K. Kwee and H. van Woerden, Bull. Astron. Inst. Netherlands 12, 327 (1956).
- R. L. Kurucz, in *Light Curve Modeling of Eclipsing Binary Stars VI*, Ed. by E. F. Milone (Springer-Verlag, Berlin, Heidelberg, New York, 1993), pp. 93–101.
- 15. A. T. Tokunaga, in *Allen's Astrophysical Quantities*, Ed. by A. N. Cox (New York, AIP Press, Springer, 2000), pp. 143–167.
- 16. L. B. Lucy, Zeitschrift Astrophysik **65**, 89 (1967).
- 17. S. M. Ruciński, Acta Astronomica 19, 125 (1969).
- 18. W. van Hamme, Astron. J. **106**, 2096 (1993).
- 19. D. M. Popper, Annual Rev. Astron. Astrophys. **18**, 115 (1980).
- 20. P. Harmanec, Bull. Astron. Inst. Czechoslovakia 39, 329 (1988).
- 21. D. H. Bradstreet and D. P. Steelman, Bull. Amer. Astron. Soc. Meet. Abstracts **34**, 1224 (2002).
- 22. L. Girardi, A. Bressan, G. Bertelli, and C. Chiosi, Astron. and Astrophys. Suppl. **141**, 371 (2000).
- 23. O. Y. Malkov, Monthly Notices Royal Astron. Soc. **382**, 1073 (2007).

Light Curve Modelling and Evolutionary Status of the Short Period Binary 1SWASP J092328.76+435044

M. M. Elkhateeb, M. I. Nouh, R. Michel, A. Haroon, and E. Elkholy

Light curve modeling for the newly discovered super contact low-mass WUMa system 1SWASP J092328.76+435044 was carried out by using a new BVR complete light curves. A spotted model was applied to treat the asymmetry of the light curves. The output model was obtained by means of Wilson–Devinney code, which reveals that the massive component is hotter than the less massive one with about $\Delta T \sim 40~\rm K$. A total of six new times of minima were estimated. The evolutionary state of the system components was investigated based on the estimated physical parameters.

Keywords: binaries: close—stars: individual: 1SWASP J092328.76+435044