УДК 524.3-327

О ДИФФЕРЕНЦИАЛЬНОМ ВРАЩЕНИИ ЗВЕЗД

© 2018 И. С. Саванов^{1*}, Е. С. Дмитриенко², Д. С. Пандей³, С. Кармакар³

¹Институт астрономии РАН, Москва, 119017 Россия

²Государственный астрономический институт им. Штернберга Московского государственного университета им. Ломоносова, Москва, 119991 Россия

³ARIES, Найнитал, 263002 Индия

Поступила в редакцию 11 января 2018 года; принята в печать 1 июля 2018 года

Рассмотрены методы анализа наблюдательных проявлений дифференциального вращения (ДВ). На основании литературных источников и наших оценок (для четырех холодных карликов) сформирован список, включающий 75 звезд. На примере анализа диаграмм « $\Delta\Omega-T_{\rm eff}$ », « $\Delta\Omega-$ период вращения» и « $\Delta\Omega-$ число Россби» проведено сопоставление определений величин параметров ДВ звезд с результатами теоретических исследований. Особое внимание уделено проблемам измерений параметров ДВ у маломассивных карликов, в том числе полностью конвективных. Проанализированы результаты определений параметров ДВ звезд солнечного типа. Рассмотрены объекты, обладающие антисолнечным ДВ (α < 0), и возможные методы, позволяющие проводить определение знака α . Отмечены направления исследований, которые в будущем могут расширить наши представления о проявлениях ДВ: его изучение во внутренних областях звезд и анализ проявлений вращательной модуляции блеска, вызванной запятненностью компонентов затменно-переменных систем (субсинхронизированные системы).

Ключевые слова: звезды: вращение

1. ВВЕДЕНИЕ

Проявления ДВ звезд поздних спектральных классов во многом подобны найденным у Солнца — периоды вращения объектов P, определяемые модуляцией кривых блеска из-за наличия пятен на поверхности звезды, зависят от положения этих пятен по широте. Как правило, при изменении положения пятна от экватора к полюсу величина P возрастает. Само явление ДВ звезд (вызванное взаимодействием вращения и конвекции) тесно связано с их магнитной активностью и служит предметом многочисленных теоретических исследований. Непосредственно наблюдаемым и наиболее изученным является ДВ Солнца. Для других звезд оно может быть наблюдательно установлено в ходе фотометрических и спектральных измерений. Сравнительно недавно астросейсмология и гелиосейсмология открыли возможности изучения ДВ внутри звезд и Солнца. Обзор теоретических исследований можно найти, например, в [1]. Особо следует упомянуть работы [2] и [3], результаты которых мы будем часто использовать в дальнейшем изложении.

Общепринято, что закон ДВ описывается уравнением вида $\Omega(\theta)=\Omega_{\rm eq}\,(1-\alpha\sin^2\theta)$, где $\Omega(\theta)$ —

угловая скорость на широте θ , $\Omega_{\rm eq}$ — угловая скорость на экваторе, $\Delta\Omega=\alpha\,\Omega_{\rm eq}$. Для Солнца $\alpha_{\rm O}=0.2$.

Наблюдательные проявления ДВ звезд могут быть исследованы несколькими методами. Прежде всего, спектральными методами ДВ может быть установлено при проведении доплеровского картирования поверхности звезды. Параметр дифференциального вращения звезды $\Delta\Omega$ может быть найден после кросс-корреляционного анализа построенных карт. Примеры такого анализа представлены в [4]. Кроме того, величина ДВ может непосредственно входить в процедуру доплеровского картирования и быть установлена при минимизации отклонений наблюдаемых и теоретических профилей спектральных линий (наборов линий). В результате анализа определяется наиболее оптимальная пара величин — период вращения и параметр ДВ (в качестве примера, см. [5]). Другой метод определения ДВ по спектральным наблюдениям связан с анализом фурье-преобразования профилей линий в спектрах быстро вращающихся звезд. В отличие от методов доплеровского картирования, связанных с исследованием переменности профилей линий, данный метод, привлекающий фурье-анализ, может быть применен лишь к профилям неактивных звезд (не содержащих деталей, формирующихся в

^{*}E-mail: isavanov@inasan.ru

холодных областях на поверхности звезды). Данный метод был развит в исследовании [6] и представлен в серии статей (см. в [7]). Существенным достоинством метода является то, что параметр ДВ может быть измерен по единичным экспозициям спектральных наблюдений, в отличие от метода доплеровского картирования, требующего серии спектральных наблюдений, достаточно равномерно охватывающих период вращения звезды.

Наконец, в [8] и [9] из различия периодов, установленных по расщеплению пиков в спектрах мощности переменности блеска запятненных звезд, были установлены параметры ДВ для представительных выборок с числом звезд в несколько десятков тысяч. В следующем разделе мы рассмотрим эти исследования более подробно.

2. ЛИТЕРАТУРНЫЕ ИСТОЧНИКИ ДАННЫХ О ДВ ЗВЕЗД

Сведения о параметрах ДВ звезд для сопоставления их с результатами теоретических исследований были взяты нами из ряда литературных источников.

Авторы работ [8] и [9], используя наблюдения телескопа Кеплер, выполнили анализ кривых блеска 18616 и 12300 объектов соответственно, и установили параметры их ДВ. Если в [8] анализ был проведен только на основе данных наблюдений ограниченного временного интервала Q3, то в [9] была рассмотрена более обширная выборка, Q1-Q14. Это наиболее многочисленные однородные данные определений α и $\Delta\Omega$, позволяющие проводить их статистический анализ. В дальнейшем при сравнении с другими литературными источниками мы будем использовать данные из [9]. Они характеризуют изменения параметров ДВ в широком диапазоне эффективных температур от 3200 К до 8000 К. Отметим, что данные [9] обладают большим разбросом значений (например, параметра $\Delta\Omega$) при фиксированном значении температуры. При этом неясно, носит ли разброс физический характер или, как считают авторы [5], он может свидетельствовать о наличии систематических ошибок, присущих методу определения параметров в [9].

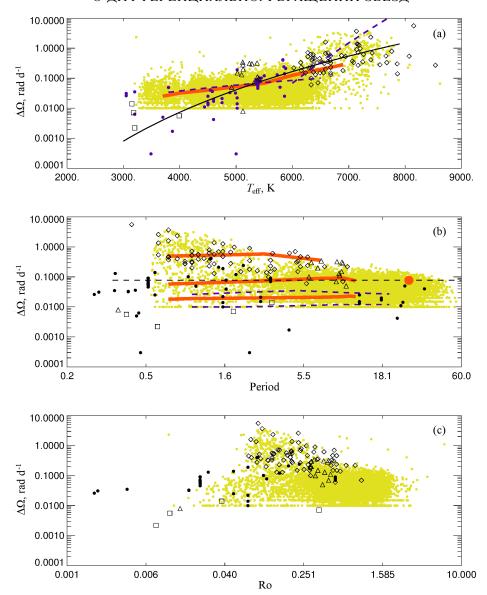
Кроме того, мы использовали данные о параметрах ДВ для звезд спектральных классов GKM из компилятивной работы [10]. Ее авторы рассмотрели высокоточные данные об α и $\Delta\Omega$, полученные только на основе исследований с применением доплеровского и зееман-доплеровского картирования. Одна из основных целей исследования состояла в установлении различий параметров ДВ одиночных звезд и компонентов двойных систем.

Многочисленные данные о параметрах ДВ звезд поздних спектральных классов содержатся в серии

статей Барнеса с соавторами (см. [5] и ссылки в ней). Нами был составлен общий список объектов с параметрами ДВ, основанный на величинах, приведенных в [11], и в статьях, перечисленных в [12]. Кроме того, к общему списку были добавлены результаты наших исследований активности холодных карликов GJ 1234 [13], KIC 1572802 [14], LHS 6351 [15] и K2-25 [16].

В недавно появившемся исследовании [17] представлены результаты анализа молодых звезд солнечного типа (с возрастом 120-650 млн лет). Массы изученных звезд лежат в диапазоне величин $0.9-0.95M_{\odot}$, а периоды — в интервале 0.326-10.6 суток. Для 15 звезд установлено присутствие магнитных полей порядка 8-195 Гс. Мы использовали оценки параметров ДВ, полученные при построении зееман-доплеровских карт.

Авторы [18] определили параметры ДВ для 2562 звезд спектральных классов КА. Методика применяемого анализа была основана на частотном анализе и схожа с используемой в [9]. К сожалению, результатов определений параметров ДВ для индивидуальных объектов авторы [18] не привели. Мы не смогли включить эти данные в наше исследование и ограничились только сопоставлением с приводимыми в работе заключениями.


Таким образом, при сравнении результатов наблюдений с теоретическими расчетами мы используем обобщенный список объектов из 75 звезд, сформированный на основании литературных источников и наших оценок для 4 холодных карликов.

3. СОПОСТАВЛЕНИЕ ВЕЛИЧИН ПАРАМЕТРОВ ДВ ЗВЕЗД С РЕЗУЛЬТАТАМИ ТЕОРЕТИЧЕСКИХ ИССЛЕДОВАНИЙ

На рис. 1а приведена зависимость $\Delta\Omega$ от эффективной температуры по данным из всех найденных нами литературных источников.

В ряде предшествующих исследований (см. в [2]) было найдено, что зависимость между этими двумя параметрами является наиболее явно выраженной. В работе [11] для ограниченного набора данных было показано, что величина $\Delta\Omega$ пропорциональна величине $T_{\rm eff}$ в степени 8.92 (с погрешностью 0.31). Эта эмпирическая зависимость была подтверждена результатами исследования [12], в котором была предложена зависимость с пропорциональностью температуре в степени 8.6.

Результаты моделирования [2] указали на наличие двух теоретических зависимостей $\Delta\Omega$ от температуры: 1) пропорциональной $T_{\rm eff}$ в степени 2 для звезд с $T_{\rm eff} < 5000$ K и 2) в степени 20 для звезд с $T_{\rm eff} > 6000$ K. В целом, их комбинация

Рис. 1. (а) Диаграмма изменений параметра $\Delta\Omega$ с температурой. Сплошная тонкая линия — эмпирическая зависимость [5]. Результаты расчетов [3] представлены толстой красной линией, результаты моделирования [2] — штриховыми линиями (пояснения см. в тексте). (b) Диаграмма изменений параметра $\Delta\Omega$ с периодом. Красный крупный кружок — положение Солнца, тонкая горизонтальная штриховая линия соответствует солнечному значению $\Delta\Omega$. Результаты расчетов [3] для звезд с массами 1.275, 1 и $0.5M_{\odot}$ (сверху вниз) представлены толстой красной линией, результаты моделирования [2] для звезд с массами 0.5 и $0.3M_{\odot}$ (сверху вниз) — штриховыми линиями (пояснения см. в тексте). (c) Диаграмма изменений параметра $\Delta\Omega$ с числом Россби Ro. На всех диаграммах светлые кружки — звезды из [9], темные кружки — данные обобщенного списка, ромбы — данные из [7], квадраты — наши данные для холодных карликов GJ 1234, KIC 1572802, LHS 6351 и K2-25, треугольники — данные из [9].

хорошо согласуется с результатами определений $\Delta\Omega$ в [9]. Эти зависимости отражают излом в данных, полученных в исследовании [2], но хуже согласуются с остальными результатами (например, из рассматриваемого нами компилятивного обобщенного списка), для которых излом отсутствует. Кроме того, результаты [2] предсказывают дальнейший рост $\Delta\Omega$ при увеличении температуры (интервал $T_{\rm eff}$ 7000—7800 K), в то время как в наблюдательных данных он отсутствует. Для объ-

ектов с $T_{\rm eff} < 5000$ K согласие результатов [2] с наблюдательными данными хуже, чем, например, для эмпирической зависимости с показателем 8.9.

Результаты расчетов [3] (для звезд с возрастом в 1 млрд. лет и периодом вращения 10 суток) представлены на рис. 1а толстой светлой линией. Для объектов с $4000 \le T_{\rm eff} \le 7000$ K согласие теоретических оценок (в том числе между собой) и наблюдательных данных достаточно хорошее. Данных о $\Delta\Omega$ для звезд с $T_{\rm eff} < 4000$ K в нашем

объединенном списке мало, кроме того, для них имеется большой разброс величин.

При сравнении теории и наблюдательных данных обращают на себя внимание два обстоятельства. Для звезд с $T_{\rm eff}>5500~{\rm K}$ теоретические зависимости предсказывают завышенные значения параметра $\Delta\Omega$ по сравнению со средним значением для ранее установленных в исследовании [9] (на рис. 1а кривые проходят близко к верхней огибающей массива данных [9]). В то же время, практически все измереные величины $\Delta\Omega$ нашего обобщенного списка находятся в согласии с теоретическими кривыми.

В области температур менее 5500 K, с учетом отсутствия данных [9] для объектов с величиной $\Delta\Omega < 0.01$ (граница детектирования ДВ в [9]) и большего разброса точек по сравнению с данными для более горячих звезд, рассматриваемые зависимости (за исключением эмпирической, пропорциональной $T_{\rm eff}$ в степени 3.8) описывают верхнюю границу величин $\Delta\Omega$.

Кроме того, из рис. 1а следует, что эмпирическая зависимость, предложенная авторами [5], $\Delta\Omega=(0.045\pm0.013)(T_{\rm eff}/5000)^{3.8\pm0.7}$, характеризующая объекты с $T_{\rm eff}<5000$ K, может служить для представления данных нашей более обширной выборки в более широком температурном диапазоне.

Аналогичные результаты можно получить из рассмотрения данных [18] для оценок параметров ДВ 2562 звезд спектральных классов КА. Например, согласно рис. 3 из [18], величина параметра $\Delta\Omega$ для звезд с $T_{\rm eff}$ от 3800 K до 6800 K меняется от 0.008 до 0.7—0.8. Это примерно в тех же пределах, что и на рис. 1а нашего исследования. Авторами [18] была предложена аналитическая зависимость, представляющая величину параметра $\Delta\Omega$ как нелинейную функцию $T_{\rm eff}$ и периода вращения.

Интересной особенностью данных, представленных на рис. 3 в [18], является наличие звезд в температурном диапазоне 6000-10000 К, для которых величина параметра $\Delta\Omega$ может достигать 0.6 и выше. На наш взгляд, следует относиться с осторожностью к результатам определений $\Delta\Omega[18]$ для звезд спектрального класса А и более горячих только на основании анализа их спектров мощности. Так, например, данные анализа [19] привели к установлению в спектре мощности АВ звезд специфического набора частот, включающего отдельный изолированный пик и массив меньших по амплитуде частично разрешаемых пиков. Согласно интерпретации [19] массив пиков обусловлен наличием короткоживущих пятен на поверхности дифференциально-вращающейся звезды, а изолированный пик связан с отражением излучения от вращающейся вокруг звезды планеты типа Юпитера. Недавно появившееся исследование [20] позволило впервые интерпретировать указанные детали на спектрах мощности, как проявления колебаний г-мод, обусловленных присутствием волн Россби. Аналогичные проявления колебаний были установлены не только для быстро вращающихся А и В звезд, но и для Ве, а также звезд типа γ Dor. С учетом результатов работы [20], очевидно, что вопрос о параметрах ДВ у звезд с $T_{\rm eff}=6000-10\,000~{\rm K}$ требует дальнейшего исследования.

На наш взгляд, не менее информативной является диаграмма, иллюстрирующая зависимость параметра $\Delta\Omega$ от периода вращения объектов. Данные для основного массива звезд расположены в области величин $\Delta\Omega$ от 0.01 (предел обнаружения в [9]) до 0.12. Теоретические расчеты приводят к заключению о слабой зависимости $\Delta\Omega$ от P для фиксированного значения массы звезды (сплошные и штриховые линии на рис. 1b, построенные по результатам [3] и [2] соответственно). С учетом этой слабой зависимости расчеты [3] для звезды с массой в одну M_{\odot} достаточно хорошо согласуются с величиной $\Delta\Omega$ для Солнца (крупный светлый кружок на рис. 1b). В области больших значений $\Delta\Omega$ (более 0.11) представлены объекты из [7] и горячие ($T_{\rm eff} > 6500 \; {\rm K}$) объекты из [9], массы которых превышают массу Солнца. Их положение хорошо согласуется с предсказаниями теории [3] (сплошная линия для массы в $1.275~M_{\odot}$).

Из сопоставления результатов расчетов [2] и [3] для объекта с массой в $0.5~M_{\odot}$ (сплошные и штриховые линии на рис. 1b) можно сделать вывод о соответствии вида зависимостей, однако сами зависимости по величине имеют систематическое различие порядка 0.03 радиан в сутки.

Расчеты [2] для звезды с массой в $0.3 M_{\odot}$ (нижняя штриховая линия) соответсвуют параметру $\Delta\Omega$ порядка 0.010 и совпадают с предельной величиной этого параметра, полученного по методике [9].

Определение параметров ДВ для маломассивных холодных карликов (в том числе полностью конвективных) является предметом особого внимания. Согласно теоретическим предсказаниям [21] и [22], для звезд с осесимметричными дипольными полями следует ожидать, что такие объекты обладают слабым ДВ, в отличие от заметного проявления ДВ, которое можно обнаружить у звезд с мультиполярными полями. Более подробное обсуждение проблемы можно найти в работе [5], ее наблюдательные аспекты — в статьях Морина с соавторами (например, [23] и [24]), а теоретические в [22]. Исследования [24] привели к установлению двух различающихся в отношении магнитных свойств групп М-карликов с одинаковыми массами и периодами вращения, что позволило авторам [24]

высказать предположение о наличии двух режимов механизма динамо. Другие варианты объяснения сосуществования у полностью конвективных карликов крупномасштабных и мелкомасштабных магнитных полей можно найти в [22]. Кроме того, из результатов перечисленных исследований следует заключение о том, что теория предсказывает значения параметра α , примерно на порядок большие по величине, чем были получены из наблюдений. Возможная причина таких расхождений может быть связана со следующим обстоятельством. Исследования магнитных полей М-карликов (см. в [24]) основаны на процедуре восстановления параметров магнитного поля только по круговой поляризации, построения температурных карт не производилось. Имеются предположения [5] о том, что в таком случае оценки $\Delta\Omega$ только по параметру V могут содержать систематические погрешности.

Наконец, на диаграмме рис. 1с приведено сопоставление параметра $\Delta\Omega$ с числами Россби для исследуемых объектов. Если не рассматривать объекты из [7] и горячие ($T_{\rm eff}>6500~{\rm K}$) объекты из [9], массы которых превышают массу Солнца и для которых параметр $\Delta\Omega$ превосходит 0.11, то для остальных звезд, включая объекты нашего обобщенного списка, можно предположить уменьшение параметра $\Delta\Omega$ с уменьшением числа Россби Ro. Подобное заключение на основе более ограниченной по числу выборке объектов было получено нами ранее в [15].

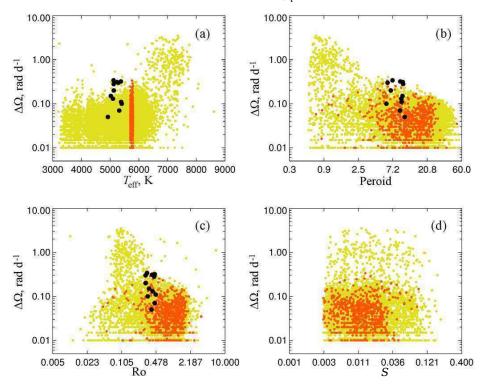
4. ДВ ЗВЕЗД СОЛНЕЧНОГО ТИПА

Особое внимание привлекает изучение ДВ звезд солнечного типа. Оно представляет интерес с точки зрения установления прошлого, настоящего и будущего в эволюции активности ближайшей к нам звезды и служит для ответа на вопрос, как активность Солнца могла меняться со временем. Кроме того, мы можем провести сопоставления данных для Солнца со свойствами более молодых и более старых звезд с массами, близкими к $1M_{\odot}$.

Как и в [25], из всех объектов [9] мы выбрали звезды с эффективной температурой $T_{\rm eff}$ от 5700 K до 5800 K и ускорением силы тяжести $\lg g$ от 4.4 до 4.5. Оба диапазона параметров включают в себя солнечные значения.

Для выбранных звезд мы провели анализ свойств активных областей (холодных пятен) на их поверхности. Запятненность S поверхности звезд по их фотометрическим наблюдениям была определена с помощью методики, предложенной в [26] и модифицированной нами в [27] (см. также в [28] подробности ее применения к звездам-карликам спектрального класса M, а в [29] — к звездам с супервспышками). Несомненное преимущество такой методики состоит в возможности

ее использования при достаточно больших выборках объектов для последующего статистического анализа и установления зависимостей общего характера.


Параметр запятненности S определяется как отношение площади всех пятен на поверхности звезды к площади всей ее видимой поверхности. Отметим, что методика, предложенная в [27], фактически указывает лишь на амплитуду изменения S максимально запятненного полушария звезды по сравнению с противоположным. Поскольку мы не знаем уровня блеска звезды при отсутствии пятен на ее поверхности, может быть получена лишь нижняя граница величины запятненности. Пояснения, касающиеся точности определения S, в том числе для звезд солнечного типа, можно найти в [25].

Кроме того, мы рассмотрели результаты анализа молодых звезд солнечного типа с возрастом $120-650\,$ млн. лет (за исключением быстровращающейся звезды $\mathrm{BD}-07\,2388$), представленные в [17]. Эти молодые объекты имеют T_{eff} ниже, чем Солнце и отобранные нами звезды из [9] на рис. 2a. Массы изученных звезд лежат в диапазоне величин $0.9-0.95\,$ масс Солнца, а периоды — в интервале $6-11\,$ суток.

Параметр ДВ у этих объектов выше, чем у аналогичных звезд из [9] (рис. 2a и b). Подобным образом эти объекты выделяются и на диаграмме « $\Delta\Omega$ —число Россби» (рис. 2c).

К сожалению, для звезд из [17] отсутствуют оценки площадей пятен на их поверхности, так что на рис. 2d представлены данные о параметре S только для звезд из [9]. Тем не менее, если использовать только эти данные, то можно сделать заключение об отсутствии ярко выраженной зависимости между параметрами S и Ro, при этом у звезд в широком диапазоне изменений параметра S — от 0.3% до 3% от видимой поверхности звезды — параметр $\Delta\Omega$ также меняется в широких пределах — от 0.01 до 0.10.

На рис. З представлена диаграмма изменений параметра $\Delta\Omega$ от возраста для рассматриваемых звезд солнечного типа. Сведения о возрасте объектов взяты из работ [9] и [17]. По нашему обобщенному набору данных мы можем сделать вывод об отсутствии заметных изменений $\Delta\Omega$ с возрастом. Это согласуется с аналогичным выводом авторов [17], а также с их заключением об отсутствии хорошо выраженных зависимостей между $\Delta\Omega$ и другими параметрами — величиной магнитного поля, периодами вращения и числами Россби. На основании этого авторы [17] ставят вопрос о слабом влиянии ДВ на генерацию магнитного поля у рассматриваемых ими звезд.

Рис. 2. Диаграммы изменений параметра $\Delta\Omega$ с температурой (а), периодом (b), числом Россби Ro (c) и параметром запятненности S (d). Светлые кружки — звезды из [9], серые кружки — звезды солнечного типа из [9], крупные темные кружки — данные из [17].

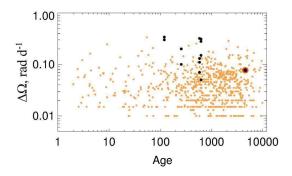


Рис. 3. Диаграмма изменений параметра $\Delta\Omega$ с возрастом для рассматриваемых звезд солнечного типа из [9] (светлые кружки) и [17] (большие темные кружки). Возраст объектов был взят из [9] и [17]. Крупный оконтуренный кружок — данные для Солнца.

В какой-то степени подобная ситуация была рассмотрена нами [29] при изучении звезд, обладающих супервспышками (с энергиями $10^{33}-10^{36}$ эрг), когда мы использовали все доступные на то время результаты их исследования. Анализ данных [29] позволил нам на основе независимых определений переменности блеска подтвердить заключение о повышенной запятненности поверхности звезд с супервспышками. Эти же данные [29] свидетельствуют о том, что несмотря на повышенную запятненность, звезды с

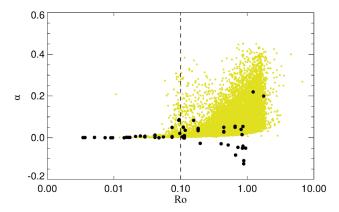
супервспышкам не выделяются из общего массива звезд параметрами ДВ.

В [25] нами было выполнено сопоставление зависимостей индекса хромосферной активности $R_{HK}^{'}$ и параметра запятненности S исследуемых звезд от возраста. Было найдено, что рассматриваемые зависимости обладают общими характерными особенностями, указывающими на повышенный уровень активности для части молодых звезд (моложе 3-4 млрд. лет), на относительно малые изменения активности объектов с возрастом 4-8 млрд. лет и возможное дальнейшее уменьшение активности более старых звезд. Если рассматривать только данные [17] и оценку $\Delta\Omega$ для Солнца, то можно сделать предположение об аналогичном изменении параметра $\Delta\Omega$ с возрастом (его уменьшении). По полному набору данных из [9] такого заключения сделать нельзя.

5. АНТИ-СОЛНЕЧНОЕ ДИФФЕРЕНЦИАЛЬНОЕ ВРАЩЕНИЕ

Знак безразмерного параметра α в соотношении для закона дифференциального вращения ($\Delta\Omega = \alpha \, \Omega_{\rm eq}, \, \alpha_\odot = 0.2$) определяет тип ДВ — солнечное, при $\alpha > 0$, и анти-солнечное, если $\alpha < 0$. При солнечном ДВ полюса вращаются медленнее экватора, при анти-солнечном — быстрее. Большинство из выше рассмотренных нами методик

определений параметров ДВ дают их абсолютные (без знака) величины. Информация о знаке величин α приводится в литературе довольно редко. К настоящему времени список объектов с отрицательными величинами α невелик. Согласно [10], в выборке, состоящей из 24 объектов, 11 звезд с анти-солнечным ДВ. Все они являются гигантами или субгигантами, три из них представляют особый интерес — это одиночные быстро вращающиеся гиганты с повышенным содержанием лития, природа появления которых остается неизвестной.


Теоретические исследования причин возникновения анти-солнечного ДВ можно найти в [30], список более поздних публикаций — в [31].

Согласно теоретическим оценкам [31], объектами с анти-солнечным ДВ должны быть холодные звезды с большими значениями чисел Россби Ro. На рис. 4 мы приводим диаграмму зависимости параметра α от Ro для объектов из нашей объединенной выборки (для сравнения также представлены данные из [9]). Напомним, что в нашу выборку входят 11 объектов с отрицательными величинами α из [10]. В полном соответствии с предсказанием [31] эти объекты лежат на диаграмме в области высоких величин параметра Ro. Общий ход изменений параметра α в зависимости от Ro для объектов из нашей объединенной выборки такой же, как и для звезд из [9], разделение объектов на группы с $\alpha < 0$ и $\alpha > 0$ происходит при Ro порядка 0.1. Наша диаграмма на рис. 4 качественно напоминает диаграмму на рис. 2 из [31], на которой разделение объектов происходит при введенной в [31] величине Ro_c (число Россби конвективное) порядка 1. В исследовании [9] рассмотрено достаточно много объектов с большими значениями Ro. но поскольку методика анализа не позволяла определять знак параметра α , неизвестно, сколько из них могли бы заполнять интересующую нас область отрицательных значений.

В работе [32] была сделана попытка разработки методики для определения знака параметра ДВ α на основе анализа первых гармоник периода вращения запятненной звезды. Уточнение данной методики представлено в исследовании [33], авторы которого также рассмотрели вопрос о возможности в ряде случаев получения информации о широте пятен на поверхности звезды по данным фотометрических наблюдений. В случае успешного развития предложенных методов будет достигнут значительный прогресс при определении знака α и, вероятно, значительно увеличено число известных звезд с анти-солнечным ДВ.

6. ЗАКЛЮЧЕНИЕ

В нашем обзоре рассмотрены методы анализа наблюдательных проявлений дифференциального

Рис. 4. Зависимость параметра α от числа Россби Ro для объектов из нашей объединенной выборки (темные кружки) (для сравнения также представлены данные из [9] — мелкие светлые кружки). Разделение объектов на группы с $\alpha < 0$ и $\alpha > 0$ происходит при Ro порядка 0.1 (вертикальная штриховая линия).

вращения (ДВ). На примере анализа диаграмм « $\Delta\Omega$ - $T_{\rm eff}$ », « $\Delta\Omega$ -P» и « $\Delta\Omega$ -Rо» проведено сопоставление определений ДВ звезд с результатами теоретических исследований. Показано, что эмпирическая зависимость, предложенная авторами [5], характеризующая объекты с $T_{\rm eff}$ < 5000 K, может служить для представления данных нашей более обширной выборки в более широком температурном диапазоне. Особое внимание уделено проблемам измерений параметров ДВ у маломассивных карликов, в том числе полностью конвективных, и их сопоставлению с теоретическими данными.

Проанализированы результаты определений параметров ДВ звезд солнечного типа.

Рассмотрены объекты, обладающие антисолнечным ДВ ($\alpha < 0$), и возможные методы, позволяющие проводить определение знака α , применение которых приведет к значительному увеличению числа известных звезд с антисолнечным ДВ. Изучены свойства зависимости параметра α от числа Россби Ro.

В заключение отметим два направления исследований, которые по нашему мнению в будущем расширят наши представления о проявлениях ДВ.

Обзор методов изучения поверхностного ДВ звезд был представлен нами в начале статьи. Более трудной задачей является изучение ДВ внутри звезд. Лишь сравнительно недавно высокоточные фотометрические данные, полученные с космическими телескопами, в первую очередь, с телескопом Кеплер, позволили решить эту задачу с привлечением методов астросейсмологии. Пока имеются немногочисленные исследования такого характера для красных гигантов, холодных субгигантов и нескольких быстро вращающихся звезд спектрального класса F (см. в [34] и ссылки в этой

статье). Пример применения методики определения ДВ пяти звезд солнечного типа [34] показал ее перспективные возможности при использовании в качестве исходных данных для моделирования информации о величине поверхностного ДВ.

Исследование [35] указало на еще одно важное приложение изучения ДВ, установленное при анализе затменно-переменных систем. Авторы [35] связали наличие среди них группы субсинхронизированных систем с проявлениями ДВ. Почти три четверти (77%) затменно-переменных систем с вращательной модуляцией блеска, вызванной пятнами, имеют расщепление пиков в спектрах мощности, возможно обусловленное наличием пятен на различных широтах и ДВ. В таких системах орбитальное вращение главных компонентов с пятнами, вероятно, синхронизировано с периодом собственного вращения звезды на экваторе, а существование пятен в приполярных областях приводит к наблюдению периодов, больших, чем орбитальные.

БЛАГОДАРНОСТИ

Данная работа была выполнена при финансовой поддержке РФФИ гранта 17-52-45048 ИНДа / INT/RUS/RFBR/P-271 «Вспышки и активность звезд спектральных классов от F до M».

СПИСОК ЛИТЕРАТУРЫ

- L. Kitchatinov and A. Nepomnyashchikh, Monthly Notices Royal Astron. Soc. 470, 3124 (2017).
- 2. M. Küker and G. Rüdiger, Astronomische Nachrichten 332, 933 (2011).
- 3. L. L. Kitchatinov and S. V. Olemskoy, Monthly Notices Royal Astron. Soc. **423**, 3344 (2012).
- 4. Z. Kővári, L. Kriskovics, A. Künstler, et al., Astron. and Astrophys. **573**, A98 (2015).
- J. R. Barnes, S. V. Jeffers, C. A. Haswell, et al., Monthly Notices Royal Astron. Soc. 471, 811 (2017).
- 6. A. Reiners, Astron. and Astrophys. **446**, 267 (2006).
- 7. M. Ammler-von Eiff and A. Reiners, Astron. and Astrophys. **542**, A116 (2012).
- 8. T. Reinhold, A. Reiners, and G. Basri, Astron. and Astrophys. **560**, A4 (2013).
- 9. T. Reinhold and L. Gizon, Astron. and Astrophys. 583, A65 (2015).
- Z. Kővári, K. Oláh, L. Kriskovics, et al., Astronomische Nachrichten 338, 903 (2017).

- J. R. Barnes, A. Collier Cameron, J.-F. Donati, et al., Monthly Notices Royal Astron. Soc. 357, L1 (2005).
- 12. A. Collier Cameron, Astronomische Nachrichten **328**, 1030 (2007).
- 13. I. S. Savanov and E. S. Dmitrienko, Astronomy Reports **55**, 890 (2011).
- 14. I. S. Savanov, N. G. Gladilina, and E. S. Dmitrienko, Astronomy Reports **60**, 1006 (2016).
- I. S. Savanov and E. S. Dmitrienko, Astronomy Reports 56, 116 (2012).
- 16. E. S. Dmitrienko and I. S. Savanov, Astronomy Reports **61**, 871 (2017).
- 17. C. P. Folsom, J. Bouvier, P. Petit, et al., Monthly Notices Royal Astron. Soc. 474, 4956 (2018).
- 18. L. A. Balona, M. Švanda, and M. Karlický, Monthly Notices Royal Astron. Soc. **463**, 1740 (2016).
- 19. L. A. Balona, Monthly Notices Royal Astron. Soc. 431, 2240 (2013).
- 20. H. Saio, D. W. Kurtz, S. J. Murphy, et al., Monthly Notices Royal Astron. Soc. 474, 2774 (2018).
- 21. T. Gastine, J. Morin, L. Duarte, et al., Astron. and Astrophys. **549**, L5 (2013).
- 22. R. K. Yadav, U. R. Christensen, J. Morin, et al., Astrophys. J.**813**, L31 (2015).
- 23. J. Morin, J.-F. Donati, P. Petit, et al., Monthly Notices Royal Astron. Soc. **390**, 567 (2008).
- 24. J. Morin, J.-F. Donati, P. Petit, et al., Monthly Notices Royal Astron. Soc. **407**, 2269 (2010).
- 25. I. S. Savanov and E. S. Dmitrienko, Astronomy Reports **61**, 461 (2017).
- 26. S. S. Vogt, Astrophys. J. 250, 327 (1981).
- 27. I. S. Savanov, Astronomy Reports **55**, 341 (2011).
- 28. E. S. Dmitrienko and I. S. Savanov, Astronomy Reports **61**, 122 (2017).
- 29. I. S. Savanov and E. S. Dmitrienko, Astronomy Reports **59**, 879 (2015).
- 30. L. L. Kitchatinov and G. Rüdiger, Astronomische Nachrichten **325**, 496 (2004).
- 31. T. Gastine, R. K. Yadav, J. Morin, et al., Monthly Notices Royal Astron. Soc. 438, L76 (2014).
- 32. T. Reinhold and R. Arlt, Astron. and Astrophys. **576**, A15 (2015).
- 33. A. R. G. Santos, M. S. Cunha, P. P. Avelino, et al., Astron. and Astrophys. **599**, A1 (2017).
- 34. M. B. Nielsen, H. Schunker, L. Gizon, et al., Astron. and Astrophys. **603**, A6 (2017).
- 35. J. C. Lurie, K. Vyhmeister, S. L. Hawley, et al., Astron. J. **154**, 250 (2017).

On the Differential Rotation of Stars

I. S. Savanov, E. S. Dmitrienko, D. S. Pandei, and S. Karmakar

We discuss methods for analyzing the observational manifestations of differential rotation (DR). Based on the literary sources and our estimates (for 4 cool dwarfs), a list containing 75 stars was compiled. Using an example of analysis of the $_{ii}\Delta\Omega-T_{\rm eff}$, $_{\dot{c}\dot{c}}$ $_{ii}\Delta\Omega-$ rotation period $_{\dot{c}\dot{c}}$ and $_{ii}\Delta\Omega-$ Rossby number $_{\dot{c}\dot{c}}$ diagrams we compared the determined parameters of DR stars with the results of theoretical studies. Particular attention is paid to the problems of measurements of DR parameters in low-mass dwarf stars, including the completely convective ones. We analyzed the measured parameters of solar-type DR stars. The objects having anti-solar DR (α < 0), and possible methods allowing to determine the sign of α are considered. We distinguish the areas of research that in the future may expand our understanding of DR manifestations: a study of DR in the inner regions of stars and an analysis of manifestations of the rotational brightness modulation caused by the spottedness of components in eclipsing-variable systems (subsynchronized systems).

Keywords: *stars*: *rotation*