

Структура научных подразделений

Оптический сектор

4 лаборатории + 1 группа 3 лаборатории + 3 группы = отдел (14 докторов, 43 кандидата, 8 б/ст., 5 аспирантов)

Радиоастрономический сектор

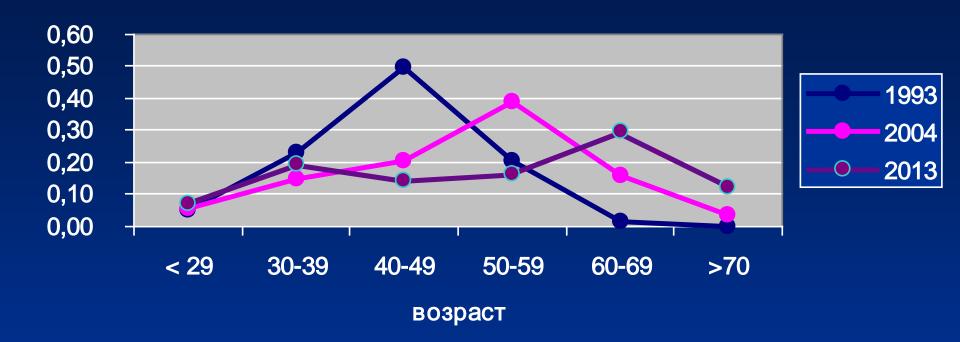
2 лаборатории + 4 группы = отдел 2 лаборатории + 1 группа = СПб филиал

(8 докторов, 13 кандидатов, 4 б/ст., 3 аспиранта)

Отдел информатики

(3 кандидата, 7 б/ст., 1 аспирант)

ТЕМЫ И ПРОГРАММЫ


- 21 инициативная тема (2013-2016)
- 32 гранта РФФИ
- 8 проектов в рамках ФЦП
- 3 гранта Президента РФ
- 1 стипендия Президента КЧР
- 4 программы РАН
- 1 международный грант
- 3 договора

Численный состав САО

Год	2003	2008	2013
Всего штатных сотрудников	466	404	407
Всего научных работников	88	99	97
В том числе:			
Академики	1	1	1
Члены-корреспонденты РАН	1	1	1
Доктора наук	17	21	22
Кандидаты наук	49	51	59
Без ученой степени	20	25	16

Возрастной состав САО

Научные сотрудники

Средний возраст научных сотрудников в 2013 г. - 52,4 года

Достижения 2013

- 1. Определение массы сверхмассивной черной дыры в ядре галактики Маркарян 6 на основе спектрополяриметрических наблюдений
- 2. Обновленный Каталог Близких Галактик
- 3. Доказательство связи турбулентных движений газа со звездообразованием в карликовых галактиках
- 4. Оптическая спектроскопия ультраярких рентгеновских источников (ULX)
- 5. Обнаружение обогащения тяжелыми металлами оболочки post-AGB звезды
- 6. Обнаружение субсекундных спайков в гигантской оптической вспышке UV Ceti
- 7. Обнаружение новых двойных и кратных звездных систем с магнитными компонентами
- 8. Новая система управления 1-м телескопа с возможностью удаленного управления процессом наблюдений
- 9. Соответствующий стандарту FITS 3.0 архив прямых снимков с астрометрической привязкой
- 10. Русский перевод монографии Т. Уилсона, К. Рольфса и С. Хюттемейстер «Инструменты и методы радиоастрономии»

проведено

Заседания	2011	2012	2013
Ученый совет	10	7	10
Технический совет	4	4	4
Общий астрофизический семинар	16	14	14
Диссертационный совет	2	2	2

Организованы и проведены:

18-21 апреля и 17-20 октября – 2 конференции пользователей (КТБТ)

Балега Ю.Ю., Караченцев И.Д., Моисеев А.В., Фабрика С.Н.

были членами научных оргкомитетов внешних конференций и комитетов

УЧАСТИЕ В КОНФЕРЕНЦИЯХ

Сотрудники участвовали в работе 14 российских конференций и 27 международных конференциях

Конференции	Устные доклады		Стендовые доклады			
	2011	2012	2013	2011	2012	2013
российские	33	37	53	29	16	37
международные	66	50	39	27	6	15
ИТОГО	99	87	92	56	22	52

ПУБЛИКАЦИИ

	2011	2012	2013
Статьи в журналах	120	110	114
Статьи в сборниках	72	58	33
Телеграмм и эл. изданий	25	8	65
Отчетов	4	8	8
Монографии	2	6	1
Получено патентов	0	0	3

ЗАЩИТЫ ДИССЕРТАЦИЙ

Пустильник С.А. – докторская, Уклеин Р. И. – кандидатская

Аспирантура

- 7 аспирантов на начало 2013 года
 - 1 аспирант завершил обучение
 - > 2 аспиранта отчислены
 - > 2 аспиранта зачислены
- 6 аспирантов на конец 2013 года

Стажировка в САО:

К.Атапин, В.Горанский, А.Бирюков, Е.Сафонова (ГАИШ), А.Митрофанова, А. Колбин (КФУ), Ю. Перепелицына, Г.Оганесян (ЮФУ), аспиранты СКФУ, СПбГУ, МГУ, КФУ

МЕЖДУНАРОДНЫЕ НАУЧНЫЕ СВЯЗИ

Действовали договоры о сотрудничестве с 10 зарубежными институтами (половина – страны СНГ)

Сотрудники выезжали в зарубежные командировки 44 раза:

27 – для участия в совместной научной работе,

18 — для участия в международных научных мероприятиях.

Обсерватория принимала 12 иностранных ученых из 7 организаций (5 стран).

РЕДАКЦИОННО-ИЗДАТЕЛЬСКАЯ ДЕЯТЕЛЬНОСТЬ

- Издано 4 выпуска 68 тома журнала «Astrophysical Bulletin» (IF=0.697).
- Выпущены 2 тома (№33, №34) «Публикаций о 6-м телескопе и его приборах, результатах наблюдений, научно-популярных статей» за 2009–2010 г.г. и 1 том «РАТАН-600. Научные статьи за 2008 год».
- Подготовлен к печати Отчет САО РАН за 2012 год.

ОБРАЗОВАТЕЛЬНАЯ ДЕЯТЕЛЬНОСТЬ

Проходили практику около 50 студентов Южного федерального, Казанского федерального, Санкт-Петербургского, Московского, Уральского, Ставропольского университетов, МФТИ

СОЗДАНЫ

Новая кафедра «Экспериментальной астрофизики» в КФУ, новая кафедра «Прикладная и компьютерная спектроскопия» в СКФУ на базе слияния кафедр оптики и спектроскопии и информационных технологий

ДЕЙСТВУЮТ

Базовая кафедра «Инфокоммуникационные технологии в астрофизике и астроприборостроении» СПб НИУ ИТМО в составе факультета Инфокоммуникационных технологий

Лекции прочитаны в СКФУ, ЮФУ, СПб НИУ ИТМО.

ПОПУЛЯРИЗАЦИЯ НАУКИ

Проведены экскурсии на телескопы САО для 25100 человек

В 15 СМИ даны интервью сотрудниками САО и о нас были опубликованы заметки

Приезжали 8 групп в рамках научного туризма

Обеспечение плановых наблюдений на БТА в 2013 г.

Год	Часы работы
2010	1524
2011	1428
2012	1718
2013 (за 11 мес.)	1208

Время простоев по техническим причинам:

2010 г. – 12 ч. (в основном – авария тележки сельсинов купола, отключения электроэнергии)

2011 г. – 10 мин. (отказ СМП по А)

2012 г. – 5 ч. (отключения электроэнергии, отказы датчиков) + 1 ночь (отказ оборудования после грозы)

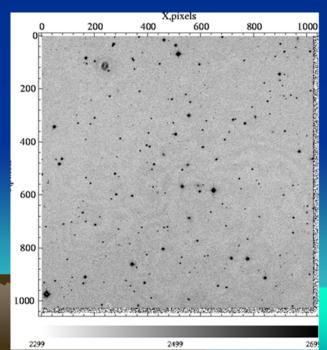
2013 г. – 11 ч. 25 мин. (неисправность светоприемной аппаратуры, неисправность купола отсутствие питания 110v 50Гц)

Участие подразделений в обеспечении наблюдений в 2013 году

Подразделение	БТА
ЛСФВО	89
ЛОН	53
ЛИЗМ	50
ГМАВР	41
ЛА	38
ЛВАК	27
ГРА	22
ЛФ3	21
ГИГВ	12

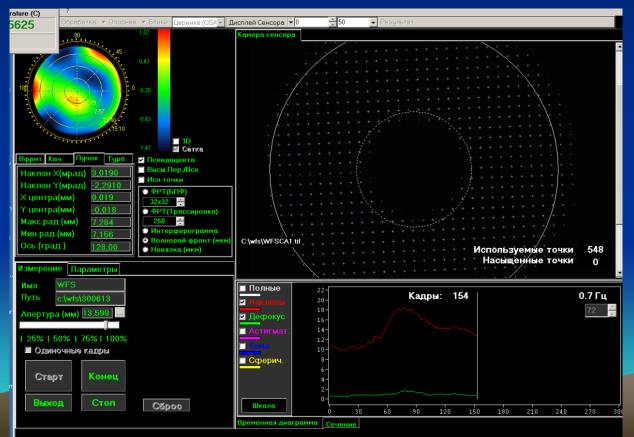
Новая система контроля 1-м телескопа САО

В конце года завершены работы по новой АСУ 1-м телескопа, предполагающей удаленный режим наблюдений.


Реализована совместимость по аппаратной части с АСУ БТА (справа – панель цифровых инверторов). Возможен режим программного ведения по обеим координатам (пример – комета Энке – рис. внизу).

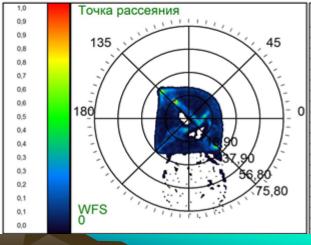
Исполнители – С. Драбек и В. Комаров (ЛОН), В. Шергин (ОИ)

Пример снимка длинной экспозицией: поле источника 3C111 за 20 мин. в фильтре R


Система контроля поверхности ГЗ БТА

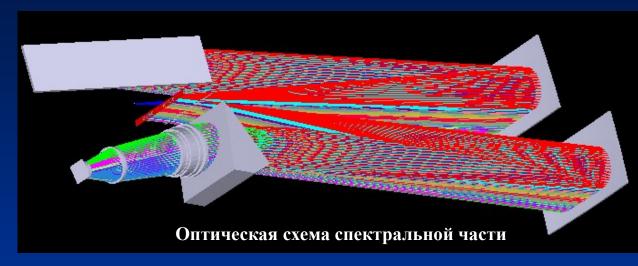
На БТА начаты измерения качества поверхности с датчиком Шака-Гартмана.

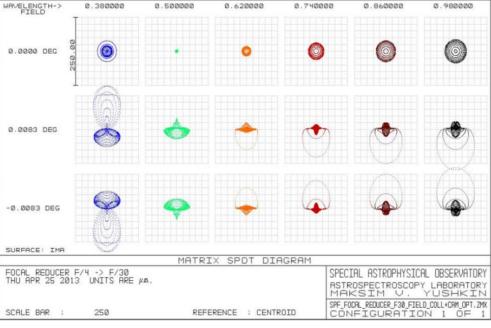
Летом и осенью проведены серии измерений.


Исполнители – Н.В.Борисов, Т.А.Фатхуллин

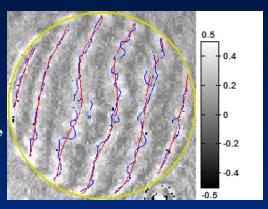
Окно программного интерфейса: слева – восстановленная поверхность, справа – изображения матрицы микролинз с векторами наклонов волнового фронта

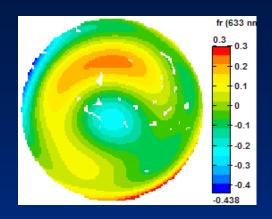
Результаты измерений 30.06.2013 г. СКО по поверхности $\approx \lambda/2$, Полный размах $\approx 2 \lambda$, 80% энергии – в 0."6



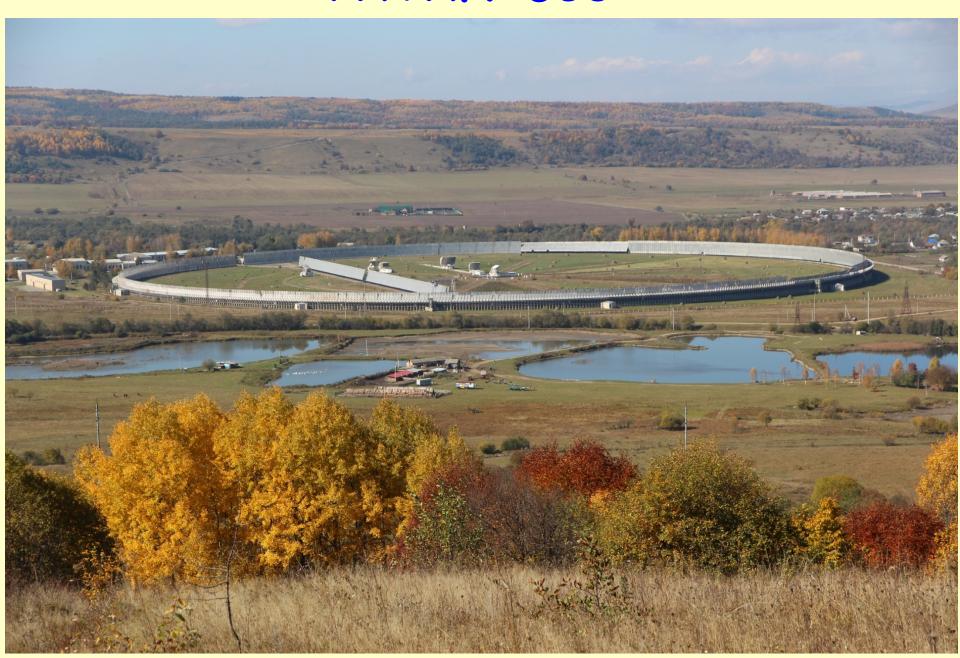

Спектрограф высокого спектрального разрешения с оптоволоконным входом для БТА (раб. группа под руководством Г.Г. Валявина)

В течение 2013 г. подготовлен эскизный проект спектрографа.


Справа – оптическая схема, внизу – расчет точечных диаграмм спектральной части (для набора длин волн и по полю камеры) и согласующей оптики (на входе оптоволокна).



Криостатированный спектрофотометр ИК-диапазона для БТА (науч. рук. – В.Л.Афанасьев, отв. исп. – Э.В.Емельянов)



В 2013 г.

- > начато изготовление узлов криостата (НИИПФ) (показан справа),
- > завершено изготовление оптических деталей (С.-Петербург) (интерферограмма и карта отклонений для одной из линз коллиматора вверху),
- > подготовлен комплект электроники управления и сбора (ЛПР CAO),
- приобретены дифрешетки, заказаны фотометрические фильтры.

PATAH-600

Наблюдения в 2013 г.

Континуум

• Запланировано: 26 147 наблюдений

Потери: 2 423 (9.3%)

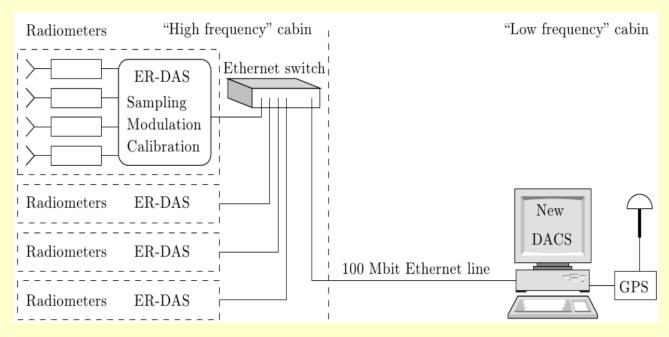
> погода
2 222 (8.5%)

Аппаратура 122 (0.5%)

прочее 79 (0.3%)

Солнечный комплекс

• Запланировано: 8 963 наблюдения

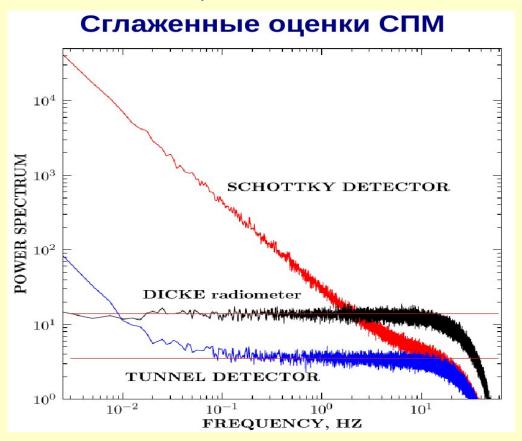

Потери: 906 (10.1%)

» погода 824 (9.2%)

Аппаратура 64 (0.7%)

> прочее 18 (0.2%)

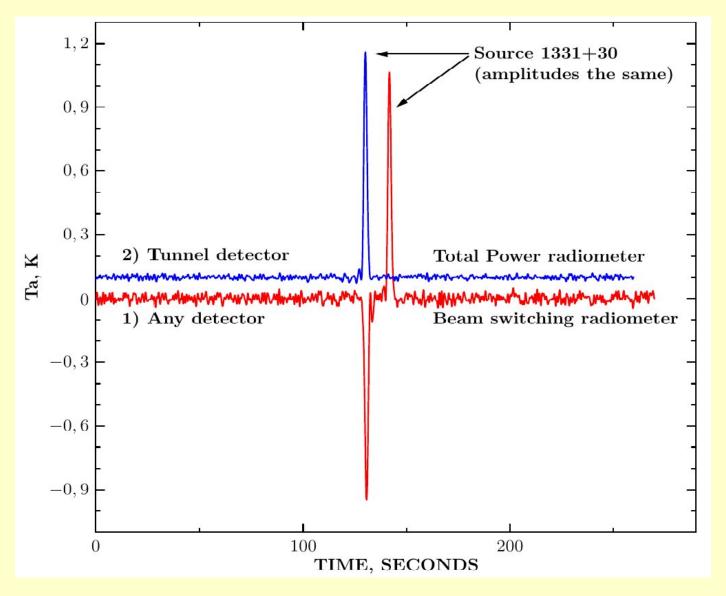
Модернизация системы сбора данных и управления континуума


Разработана и внедрена прецизионная измерительная система. Новый подход к регистрации данных позволяет:

- упростить конструкцию радиометра (использовать программную балансировку вместо аппаратной);
- проводить оперативную диагностику состояния радиометра;
- исследовать отдельные узлы и каскады радиометра для выявления и устранения источников нестабильностей.

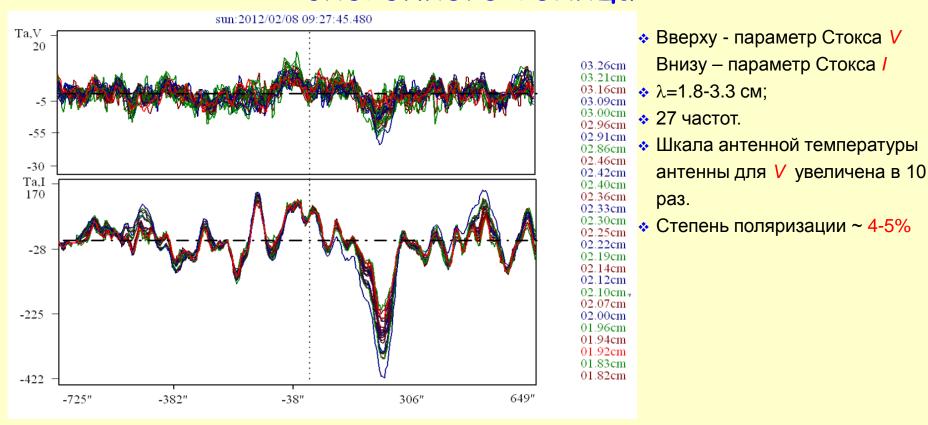
Лаборатория радиометров континуума

Радиометр полной мощности



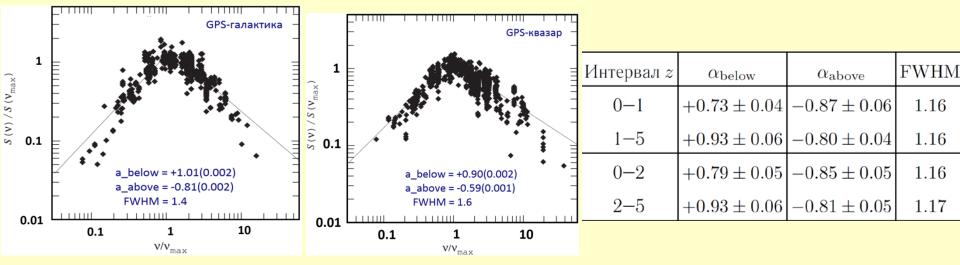
Впервые реализован Идеальный радиометр полной мощности:

- чувствительность в 2 раза выше, чем у модуляционного радиометра на масштабах времени до 30 секунд;
- На масштабах времени до 50 секунд чувствительность радиометра полной мощности остается выше, чем модуляционного.


Лаборатория радиометров континуума

Радиометр полной мощности

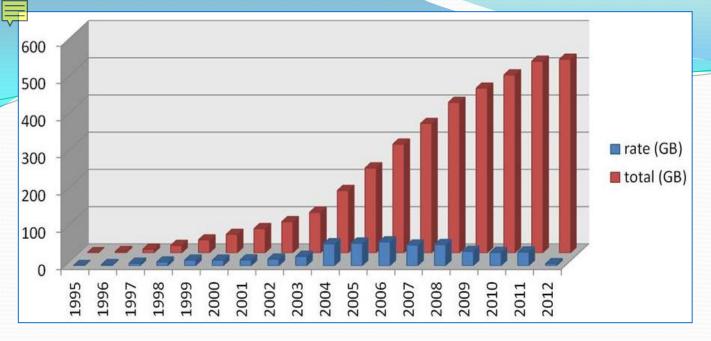
Такой результат получен впервые в мире


Магнитное поле мелкомасштабной структуры спокойного Солнца

Достигнута предельная чувствительность измерения поляризованного сигнала при наблюдениях мелкомасштабной структуры спокойного Солнца.

Магнитное поле отдельных гранул — 50-230 Гс (в рамках механизма тормозного излучения).

Двойственная природа GPS объектов

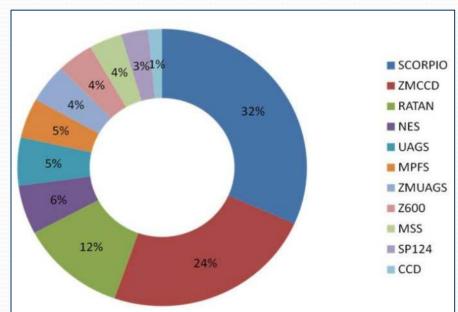


Средний нормированный радиоспектр GPS галактик и квазаров имеет ряд отличий:

- GPS галактики имеют более *крутые* на высоких частотах спектры, в результате чего их спектры более *узкие*, чем у квазаров.
- ❖ Низкочастотный спектральный индекс в среднем не отличается. Но он меняется с ростом красного смещения Z − наблюдается его увеличение (Таблица). Это может говорить в пользу наличия вещества с высокой плотностью излучающих частиц в околоядерных областях GPS-объектов.
- ❖ Численность GPS галактик резко падает с увеличением красного смещения, начиная с z=1.
- ❖ Галактики и квазары на одинаковых Z имеют угловые размеры одного порядка, при этом их светимости могут на порядок отличаться.
- ❖ Наблюдается дефицит объектов на больших красных смещениях с низкими частотами пика (несколько ГГц). Возможно, на больших ∠ отсутствуют объекты с крупными компонентами синхротронного самопоглощения.

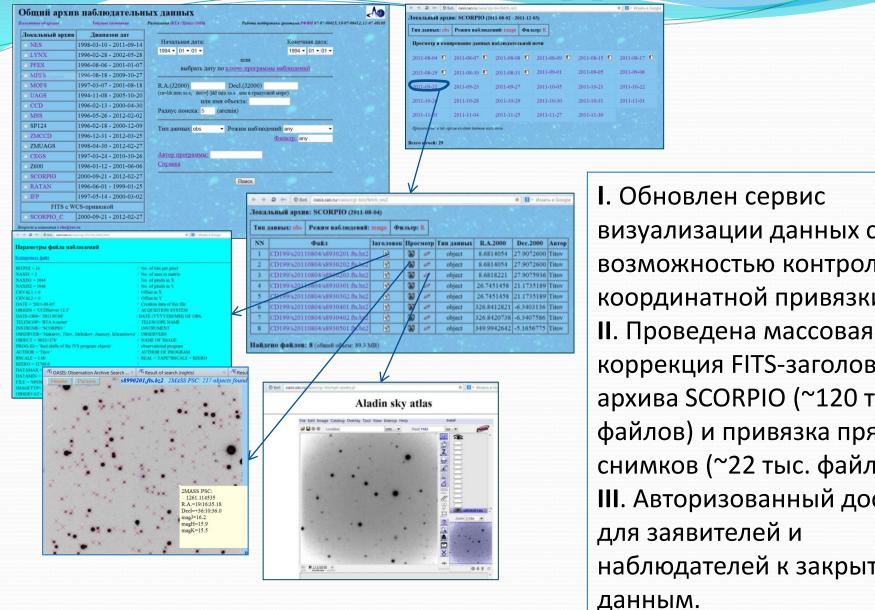
Мингалиев М.Г., Сотникова Ю.В., Муфахаров Т.В., Эркенов А.К., Удовицкий Р.Ю.

Отдел Информатики 2013

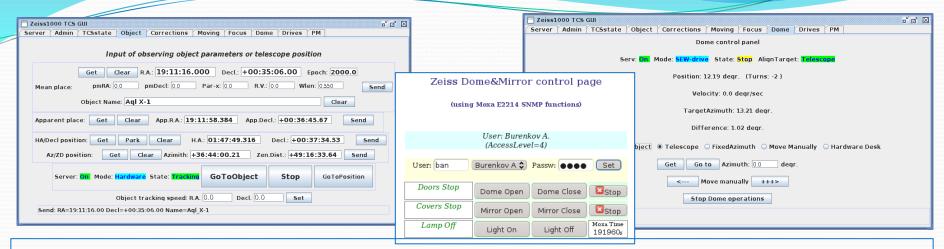

Объем и темп прироста данных

Состав общего архива наблюдений САО

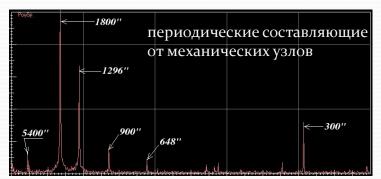
По типу наблюдений:

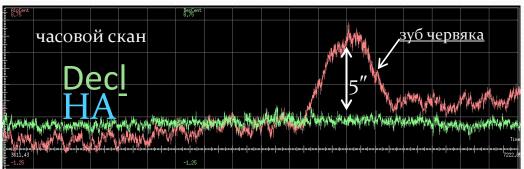

Прямые снимки	48%
Длинная щель	16%
Мультиобъектная спектроскопия	14%
Фабри-Перо	12%
Эшелле-спектры	10%
Не определяются алгоритмом <	0.1%

По локальным архивам (к-во файлов):



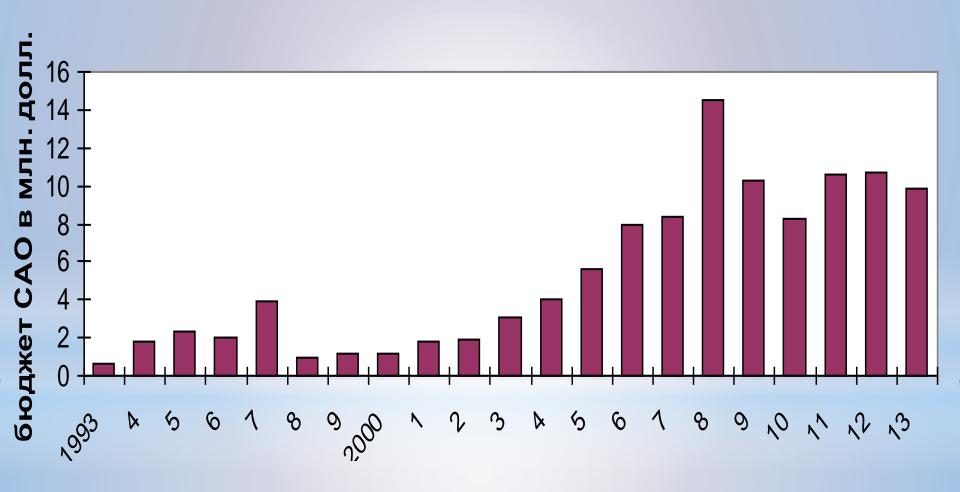
Модернизация веб-интерфейса OASIS



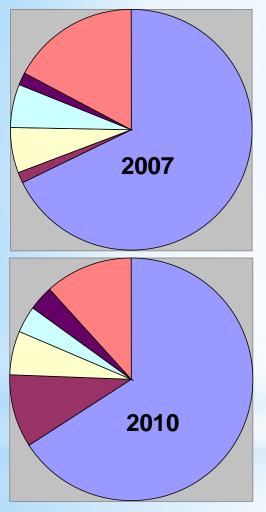

- **I**. Обновлен сервис визуализации данных с возможностью контроля координатной привязки.
- коррекция FITS-заголовков архива SCORPIO (~120 тыс. файлов) и привязка прямых снимков (~22 тыс. файлов). **III**. Авторизованный доступ для заявителей и наблюдателей к закрытым

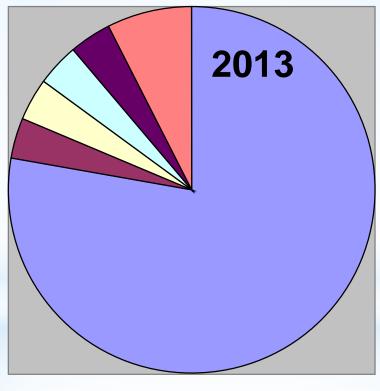
Программное обеспечение новой АСУ и СКН Цейсс-1000

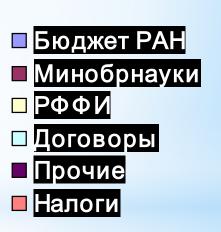
Ввод в эксплуатацию новой клиент-серверной АСУ, разработанной на Java. Управление телескопом, куполом и инженерное управление со смартфона.


Обновлены коэффициенты модели системы коррекции наведения (СКН), дающие точность наведения по часовому углу (НА) и склонению - 3" и 7".

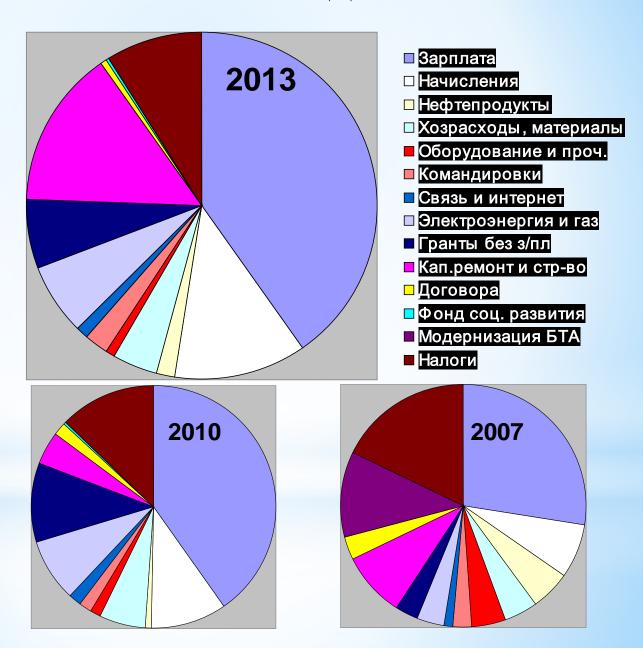
КАПИТАЛЬНОЕ СТРОИТЕЛЬСТВО И РЕМОНТ


- ***** ТЕХНИЧЕСКОЕ ПЕРЕВООРУЖЕНИЕ ТЕЛЕСКОПОВ (6,7 млн. руб.)
- 10 промышленных компьютеров для управления комплексом телескопов и сбора данных;
- цифровой сверхширокополосный запоминающий осциллограф для радиометрических систем;
- 5 объемных голографических решеток для SCORPIO-2 и 2 решетки для волоконного спектрометра на Ц-1000;
- криорадиометр на частоту 20 ГГц;
- видеокамера для диапазона 0.9 1.7 мкм для интерферометрии на БТА
- **ОБЩЕЖИТИЕ ДЛЯ МОЛОДЫХ УЧЕНЫХ (18 млн. руб.)**
- ***** КАПИТАЛЬНЫЙ РЕМОНТ (10 млн. руб.)
- Герметизация купола БТА
- Ремонт кровли трансформаторной подстанции РП-35 на ВНП
- Ремонт 2 помещений БТА
- Ремонт производственных зданий на Р-600 (гостиница, замена окон, ремонт в **KA3**)
- Благоустройство и ремонт зданий и сооружений ННП (детский сад, ОИ, котельная, гараж)
- Ремонт системы горячего водоснабжения (дом 4)




Распределение полученных обсерваторией средств по годам с 1993 по 2013 гг.

Финансирование 313,154 млн. руб.



Финансирование (тыс. рублей)

	2009	2011	2013
ВСЕГО:	340385	322171	313154,0
PAH	231517	225881	263668,3
Основной бюджет	130561	135509	183453,0
Программы РАН	96706	76122	55264,3
Кап. строительство	4250	14250	24951,0
Минобрнауки	31956	33760	11700,0
ЦКП	22000	17930	-
Уник. установки	4400	4480	4817,0
ФЦП Кадры	4500	10750	5683,0
Гранты Президента	1056	600	1200,0
РФФИ	19613	11028	12144,2
Договора	16154	9659	13513,4
Прочие (ЖХ, школа, гостиницы)	7826	11617	12128,1

Год Средняя зарплата

Расходы

Расходы за 2013 г.

ВСЕГО	299247,0
Зарплата	135892,0
Начисления на зарплату	38039,0
Нефтепродукты	5263,0
Хозрасходы, материалы	9462,0
Оборудование и прочие	4091,0
Командировки	6820,0
Связь+интернет	2800,0
Электроэнергия, газ	23800,0
Гранты,программы(без з/пл)	9130,0
Кап. ремонт и строительство	17000,0
Договора (без з/пл)	300,0
Фонд соц. развития	895,0
Модернизация БТА	17700,0
Налоги (на имущ. и землю)	28055,0

ОСНОВНЫЕ ИТОГИ 2013

(+)

- ✓ Завершение газификации жилых домов
- ✓ Создание новой базовой кафедры «Экспериментальной астрофизики» в КФУ
- ✓ Создание идеального радиометра для континуальных измерений на Р-600

(-)

- Не завершено строительство общежития
- > Сокращение международных научных связей
- Отсутствие средств на содержание и развитие научной инфраструктуры

Благодарю за внимание!