ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ СПЕЦИАЛЬНАЯ АСТРОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (CAO PAH)

Научная квалификационная работа

«Исследование геометрии и кинематики центральных областей активных галактик»

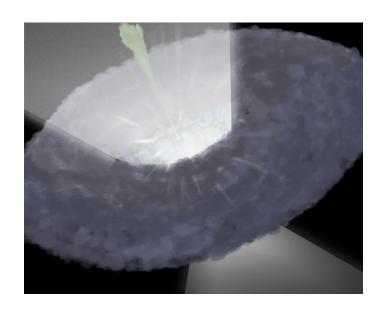
Аспирант Малыгин Е.А.

Научный руководитель д.ф.-м.н. Моисеев А.В.

Лаборатория спектроскопии и фотометрии внегалактических объектов

Направление 03.06.01 Физика и астрономия Профиль 01.03.02 Астрофизика и звёздная астрономия

Нижний Архыз 2023


Актуальность темы

Что известно об АЯГ:

• аккреция вещества на СМЧД.

Что видно из наблюдений:

 центральный парсек в оптике неразрешим.

Почему важно:

- корреляция массы СМЧД с характеристиками галактики, эволюция массы СМЧД с z.
- оценка расстояний и физических параметров в центральных областях АЯГ.

Цели и задачи работы

Цель: Исследование физических характеристик, геометрии и кинематики вещества в центральном оптически неразрешимом парсеке АЯГ с помощью различных оптических наблюдательных методов.

Задачи:

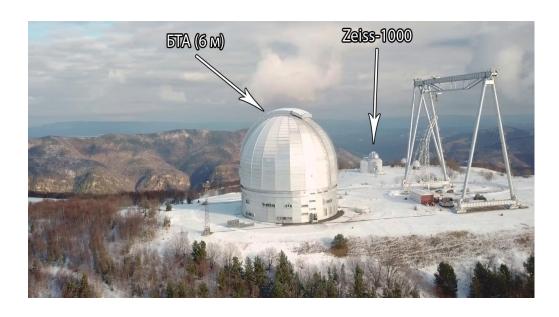
- 1. Адаптация методики фотометрического эхокартирования в среднеполосных фильтрах для определения размеров BLR-областей.
- 2. Определение скоростей газа в BLR, масс и спинов СМЧД, параметров аккреционного диска и геометрической ориентации систем.
- 3. Адаптация методики поляриметрического эхокартирования в среднеполосных фильтрах для определения радиуса сублимации пыли.
- 4. Методическое исследование многорежимного фокального редуктора MAGIC для 1-м телескопа Цейсс-1000 САО РАН для проведения с его помощью высокоточных наблюдений внегалактических объектов.

Структура работы

Введение

Глава 1. Методы фотометрических, поляриметрических и спектральных наблюдений

Глава 2. Исследование АЯГ методом фотометрического эхокартирования


Глава 3. Спектрополяриметрия АЯГ


Глава 4. Поляриметрическое эхокартирование АЯГ

Заключение Литература

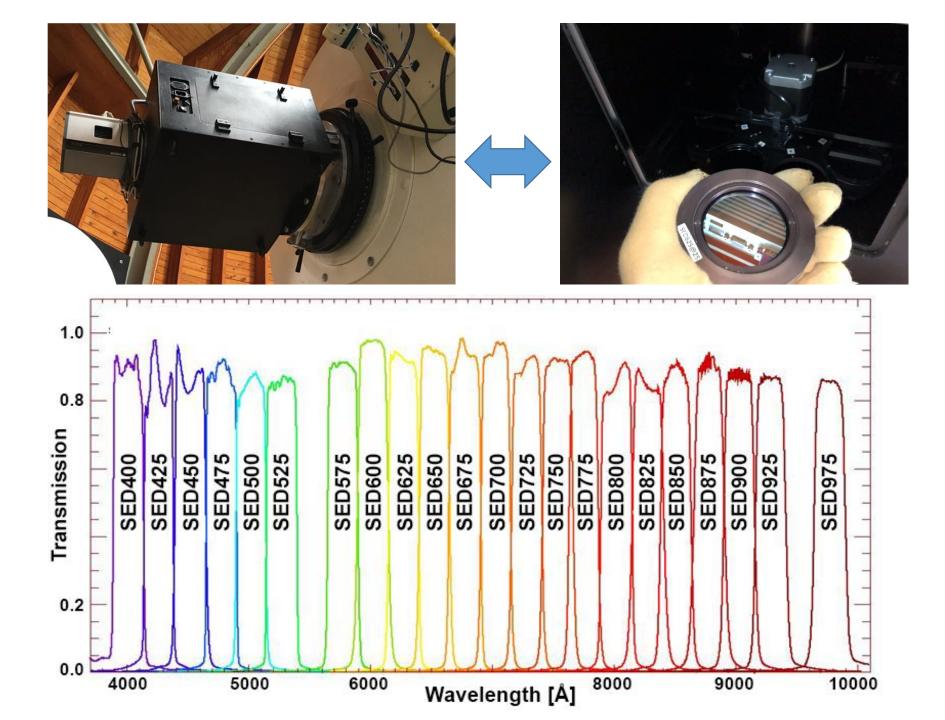
Глава 1. Методы фотометрических, поляриметрических и спектральных наблюдений

Описывается редукция фотометрических, поляриметрических, спектрополяриметрических и спектральных данных, получаемых на БТА и Цейсс-1000 САО РАН и телескопа Коперника в Асьяго. Исследование прибора MAGIC.

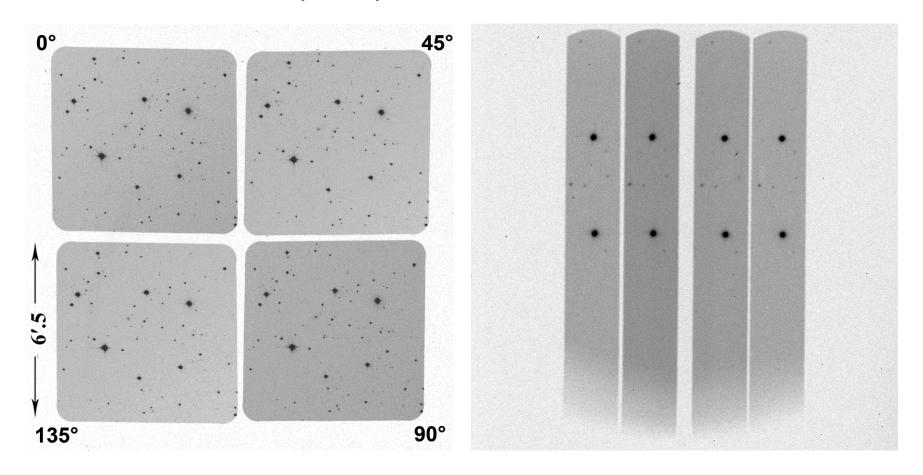
Глава 1. Методы фотометрических, поляриметрических и спектральных наблюдений

Описывается редукция фотометрических, поляриметрических, спектрополяриметрических и спектральных данных, получаемых на БТА и Цейсс-1000 САО РАН и телескопа Коперника в Асьяго.

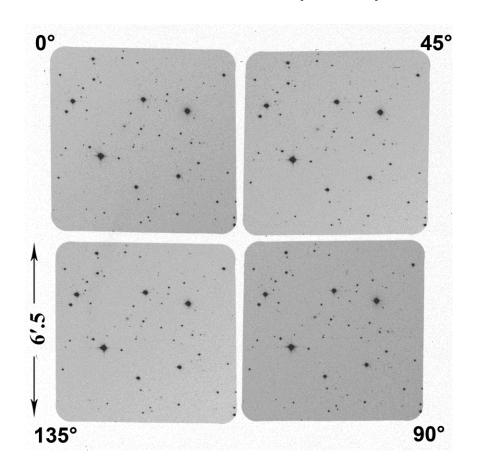
Исследование прибора MAGIC.



Copernico 1.82-m telescope Italy, Asiago AFOSC (double WP + 100Å filters)



1-m Zeiss + StoP/MAGIC CAO PAH (double WP + 250Å SED)



Пример наблюдений Mrk 509

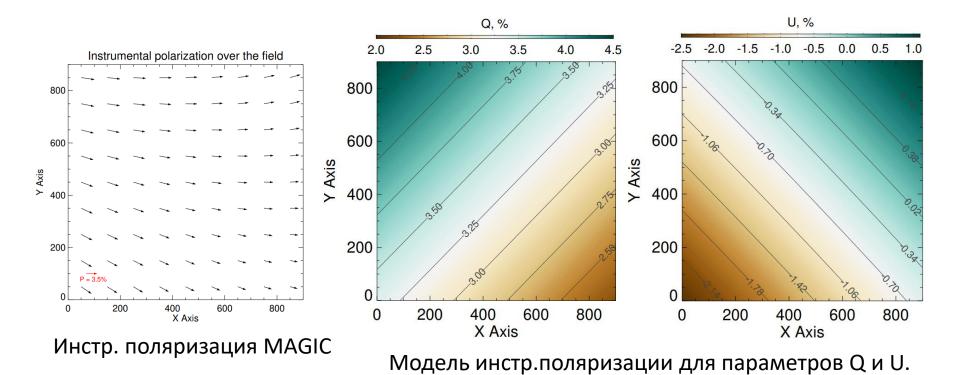
1-m Zeiss-1000 + MAGIC + SED675 6'.5 × 6'.5 0".45/pix (Andor iKon-L 936 bin 1 × 1) 1-m Zeiss-1000 + STOP + SED675 0'.9 × 6'.1 0''.35/pix (Andor iKon-L 936 bin 2 × 2)

Пример наблюдений Mrk 509

$$I = I_0 + I_{90}K_Q + I_{45} + I_{135}K_U$$

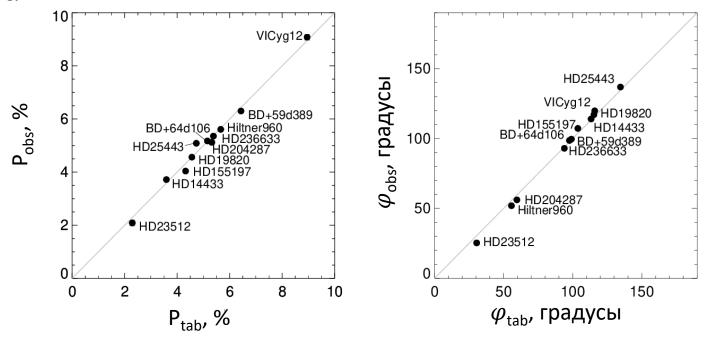
$$Q = \frac{I_0 - I_{90} K_Q}{I_0 + I_{90} K_Q}$$

$$U = \frac{I_{45} - I_{135} K_U}{I_{45} + I_{135} K_U}$$


$$P = \sqrt{Q^2 + U^2}$$

$$\varphi = \frac{1}{2}\arctan\left(\frac{U}{Q}\right)$$

if
$$\sigma_P/P \gtrsim 0.7$$
 [< 95% obtained data] then $P_{\rm unbiased} = P \cdot \sqrt{1 - (1.41 \cdot \sigma_P/P)^2}$


Глава 1. Методы фотометрических, поляриметрических и спектральных наблюдений

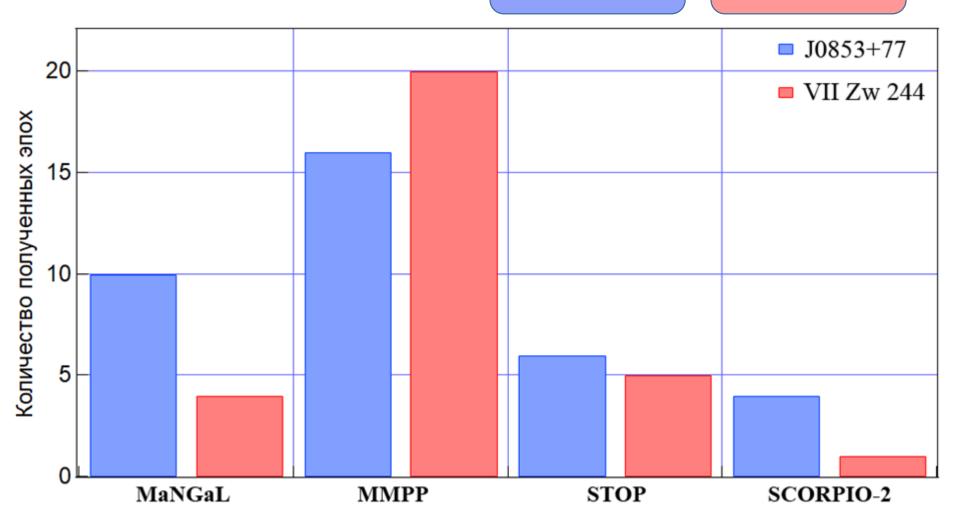
Описывается редукция фотометрических, поляриметрических, спектрополяриметрических и спектральных данных, получаемых на БТА и Цейсс-1000 САО РАН и телескопа Коперника в Асьяго. Исследование прибора MAGIC.

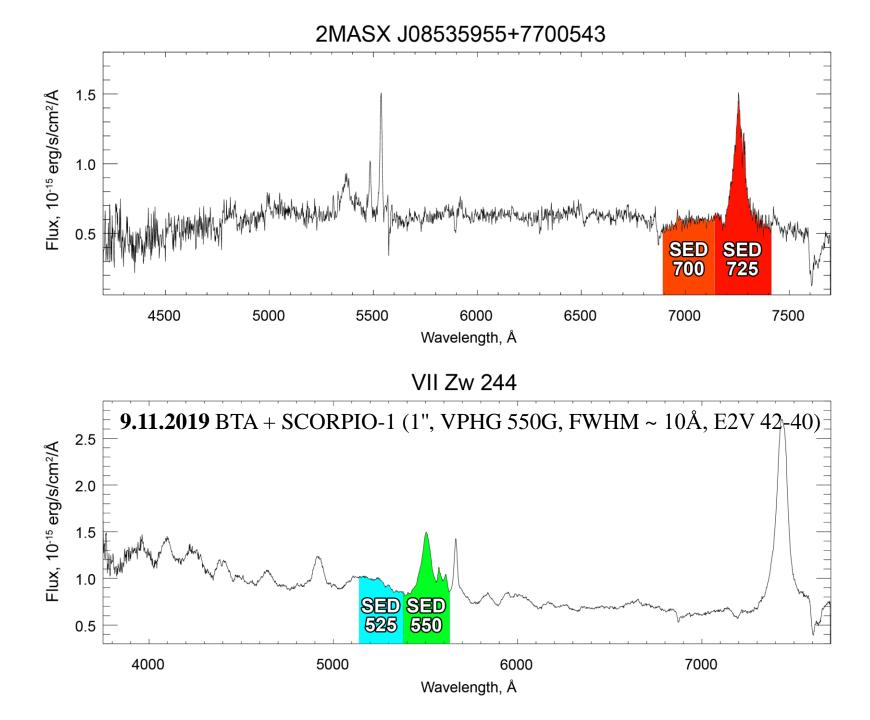
Глава 1. Методы фотометрических, поляриметрических и спектральных наблюдений

Описывается редукция фотометрических, поляриметрических, спектрополяриметрических и спектральных данных, получаемых на БТА и Цейсс-1000 САО РАН и телескопа Коперника в Асьяго. Исследование прибора MAGIC.

Результаты методических исследований MAGIC: отклонение наблюдаемых параметров поляризации от табличных для звёзд-стандартов (Afanasiev et al, 2021).

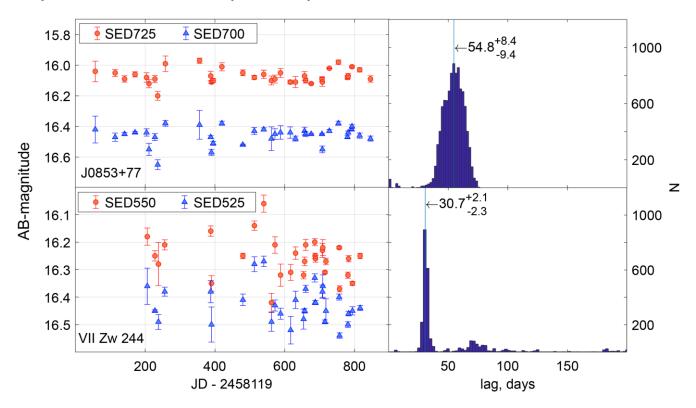
Глава 2. Исследование АЯГ методом фотометрического

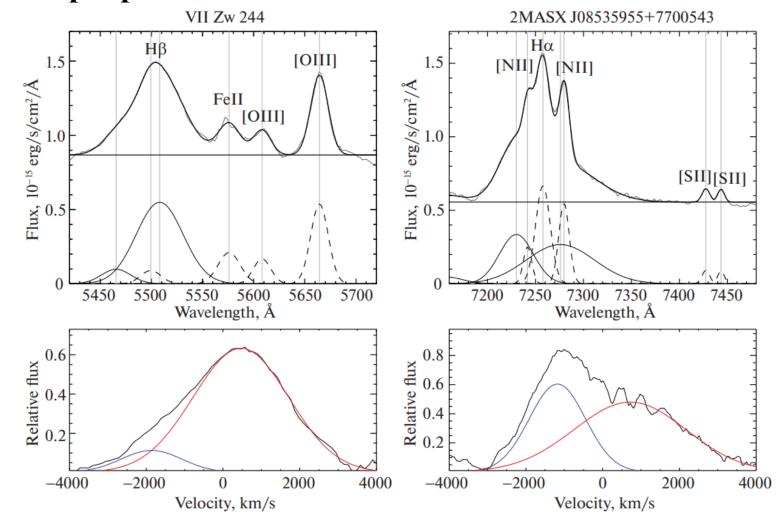

эхокартирования


Снято: 30 эпох

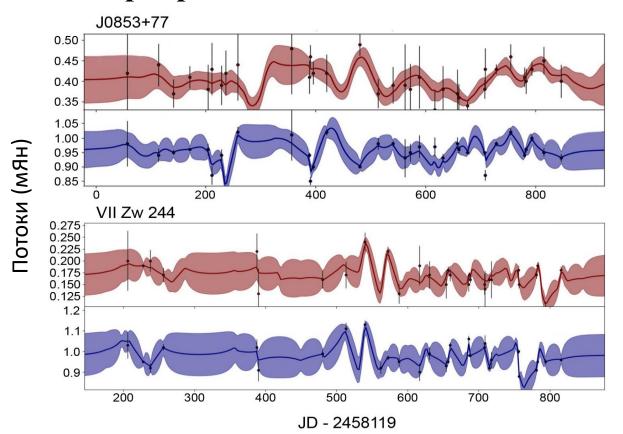
∆t: 610 дней

Снято: 36 эпох


Δt: 814 дней


Глава 2. Исследование **АЯГ** методом фотометрического эхокартирования

Многолетний фотометрический мониторинг АЯГ 1 типа VII Zw 244 и LEDA 3095839 для измерения задержки излучения и последующей оценки размеров BLR-области.

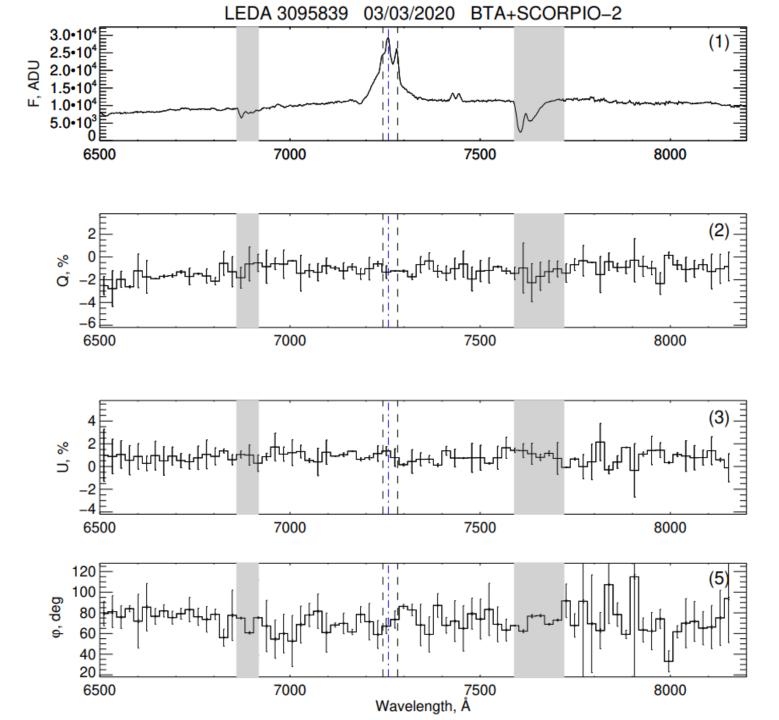

Кривые блеска в континууме (АД) и в линии (BLR) + JAVELIN-анализ (Malygin et al, 2020)

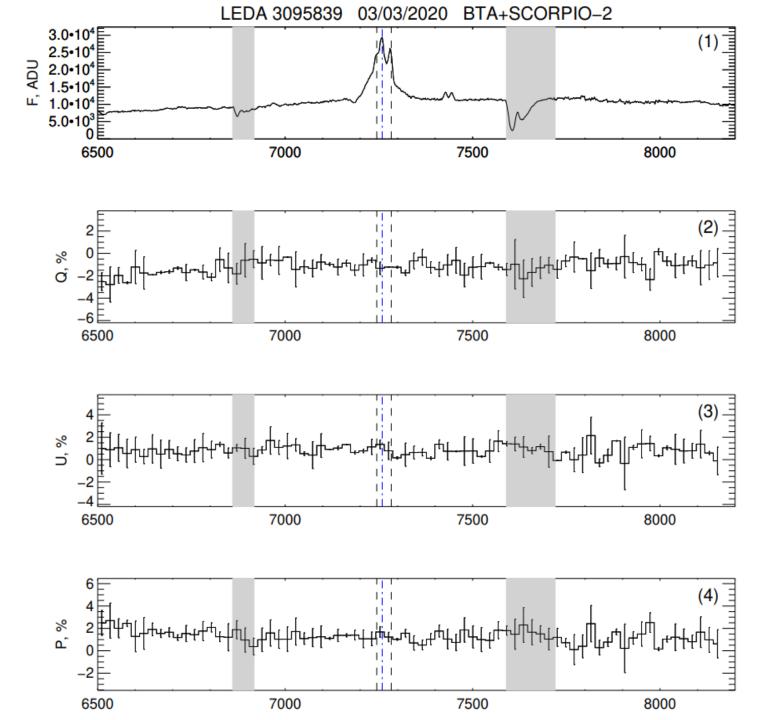
Глава 2. Исследование **АЯГ** методом фотометрического эхокартирования

Спектральный анализ бальмеровских линий в АЯГ (Malygin et al, 2020)

Глава 2. Исследование **АЯГ** методом фотометрического эхокартирования

JAVELINмоделирование
кривых блеска в
линии и континууме
для исследуемых АЯГ


$$M_{\rm SMBH} = f c \tau v^2 / G$$


Object (line)	τ _{line} , days	$\vartheta_{\mathrm{line}}^2$, km ² /s ²	λL ₅₁₀₀ , erg/s	M_{\bullet} , $log(M/M_{\odot})$
J0853+77 (Hα)	$54.8^{+8.4}_{-9.4}$	2.3×10^{6}	0.87×10^{44}	$7.398^{+0.153}_{-0.171}$
VII Zw 244 (Hβ)	$30.7^{+2.1}_{-2.3}$	1.9×10^{6}	1.67×10^{44}	$7.049^{+0.068}_{-0.075}$

Uklein et al, 2019 Malygin et al, 2020

Глава посвящена спектрополяриметрическим исследованиям АЯГ VII Zw 244 и LEDA 3095839. Измерены массы СМЧД, их спины, напряжённости магнитных полей на горизонте событий, а также в комбинации с реверберацией наклон систем к лучу зрения.

Объект	Режим	VPHG/ Фильтр	Дата	Эксп., с	Seeing	Air Mass
LEDA 3095839	specpol	1026@735	03.03.20	$300 + 9 \times 600$	1".7	1.4
	pol	SED700	10 11 10	$60 + 4 \times 80$	1".3	1.2
		SED725	18.11.19	$60 + 4 \times 50$		
VII Zw 244	specpol	pecpol 940@600		6 × 900	1".7	1.3
	pol	SED700		7 × 180	2".5	1.3
		SED725	7.11.2019	7 × 180		
		SED750		7 × 180		

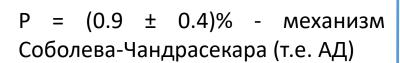
LEDA 3095839

Спин СМЧД а численно определяется из

Коэффициент радиационной эффективности в случае геометрически тонкого, оптически аккреционного диска толстого Шакуры-Сюняева определяется из наблюдений:

$$\varepsilon(a) = 1 - \frac{R_{\rm ISCO}^{3/2} - 2R_{\rm ISCO}^{1/2} + |a|}{R_{\rm ISCO}^{3/4} \left(R_{\rm ISCO}^{3/2} - 3R_{\rm ISCO}^{1/2} + 2|a|\right)^{1/2}}$$

$$R_{\rm ISCO}(a) = 3 + Z_2 \pm \left[(3 - Z_1)(3 + Z_1 + 2Z_2) \right]^{1/2}$$


$$Z_1 = 1 + (1 - a^2)^{1/3} \left[(1 + a)^{1/3} + (1 - a)^{1/3} \right]$$

$$Z_2 = (3a^2 + Z_1^2)^{1/2}$$

$$\varepsilon(a) = 0.105 \left(\frac{L_{\text{bol}}}{10^{46} \text{erg/s}}\right) \left(\frac{L_{5100}}{10^{45} \text{erg/s}}\right)^{-1.5} \cdot M_8 \,\mu^{1.5} \qquad \begin{cases} M_8 = M_{\text{SMBH}} / (10^8 M_{\odot}) \\ \mu = \cos(i) \end{cases}$$

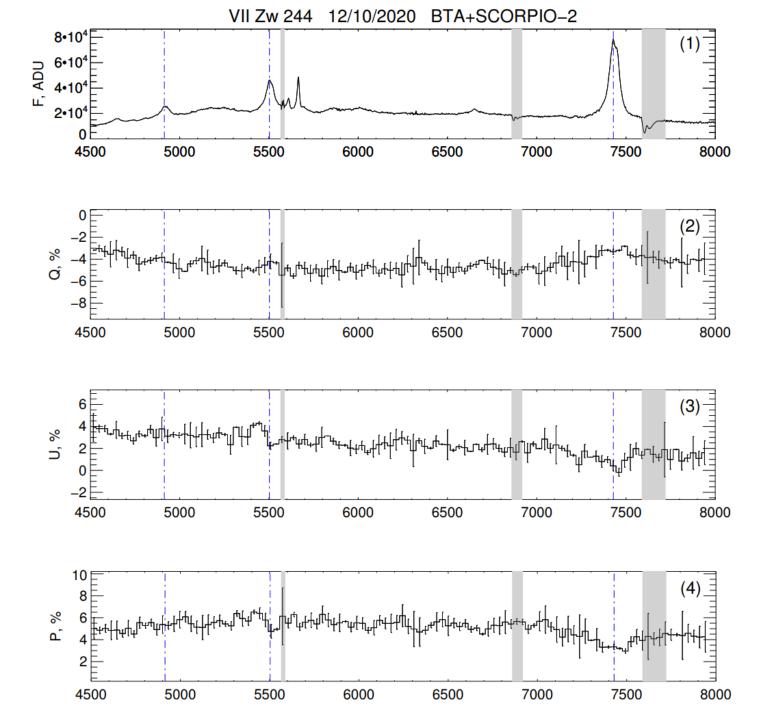
LEDA 3095839

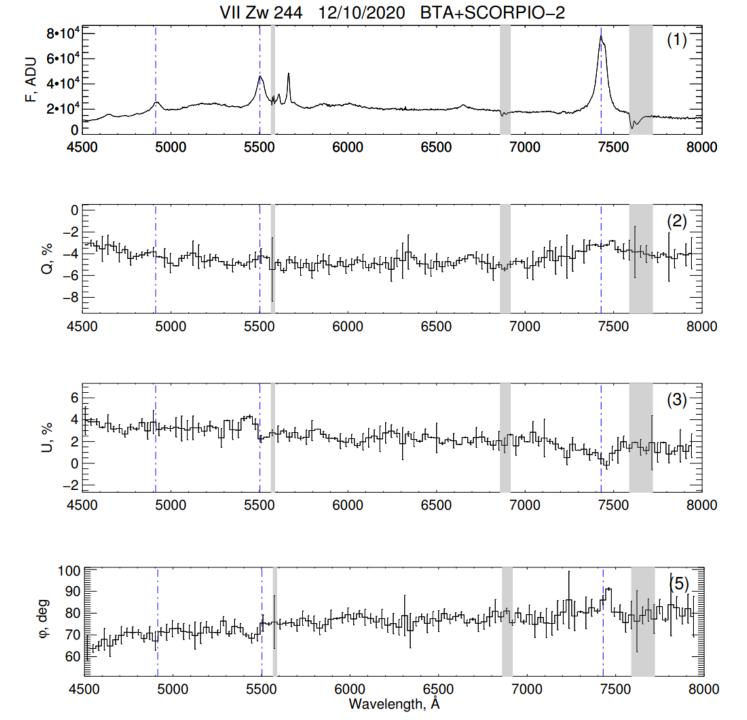
Магнитное поле в АД имеет степенной вид

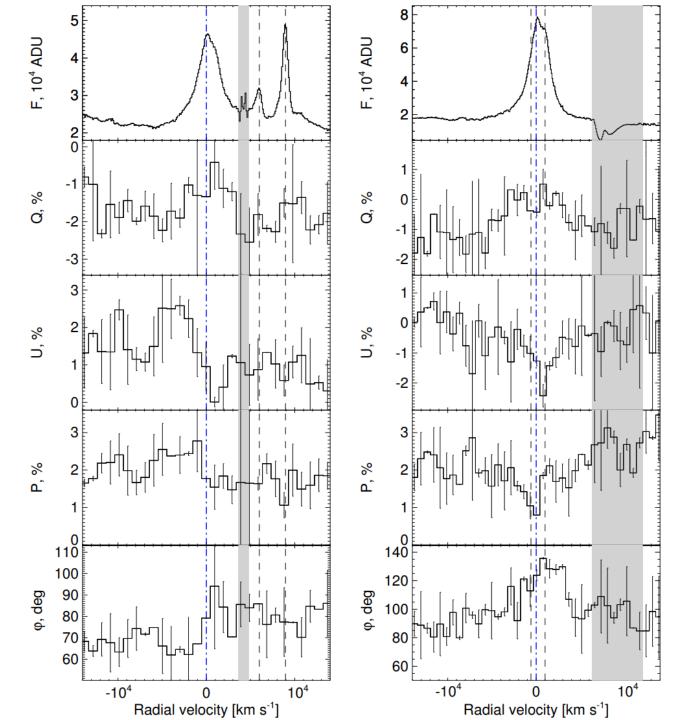
$$i = 35^{\circ}$$
 или $i = 45^{\circ}$

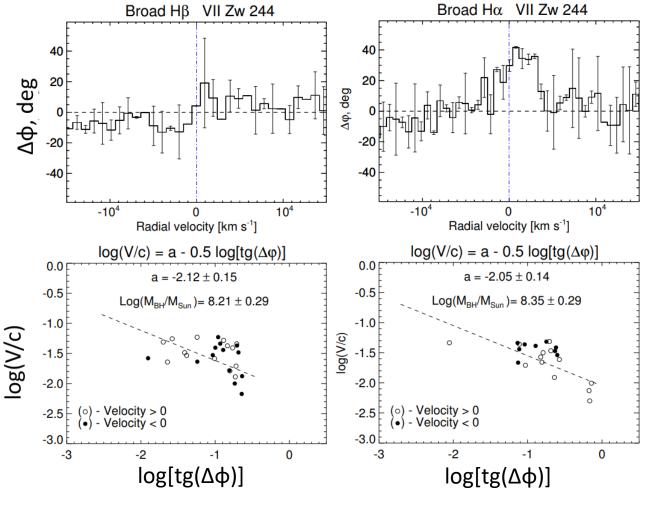
$$B(R) = B_{\rm H}(R_{\rm H}/R)^{\rm s}$$

 $B_{
m H}\,$ — напряжённость МП на горизонте событий

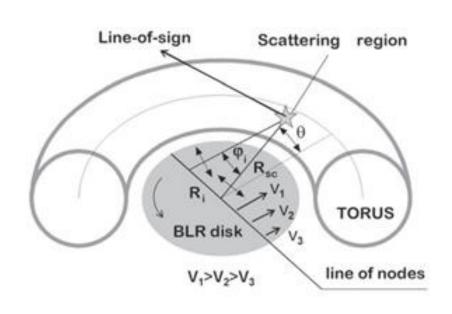

$$R_{\rm H} = GM_{\rm SMBH} \left(1 + \sqrt{1 - a^2} \right) / c^2$$


Спектральный подход:


$$B_{\rm H} = \frac{10^{(5.78 \pm 0.07)} 1.05^{-0.5} \sqrt{\varepsilon}}{l_E^{(0.295 \pm 0.020)} |a| [\cos(i)]^{3/4}} \left(\frac{10^3 \text{km/s}}{FWHM}\right)^3 G$$


$$FWHM(H_{\beta}) = 2\sqrt{2\ln(2)} \cdot 0.88^{-0.5} V_{H\alpha}$$

$$l_E = L_{bol}/L_{Edd} \qquad L_{Edd} = 1.5 \cdot 10^{38} M_{\rm SMBH}/M_{\odot}$$


$$\log\left(\frac{V}{c}\right) = a - 0.5 \cdot \log[\operatorname{tg}(\Delta\varphi)]$$

$$a = 0.5 \cdot \log \left[\frac{GM_{\text{SMBH}} \cos^2(\theta)}{c^2 R_{SC}} \right]$$

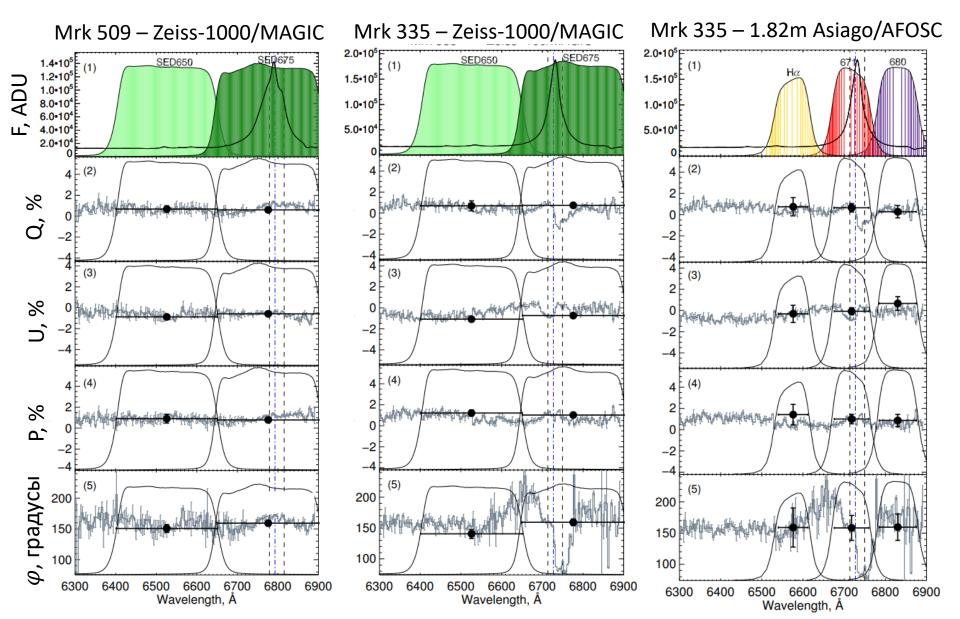
$$\log\left(\frac{M_{\rm SMBH}}{M_{\odot}}\right) \approx 10.25 + 2a + \log(R_{\rm SC})$$

Глава 3. Спектрополяриметрия АЯГ

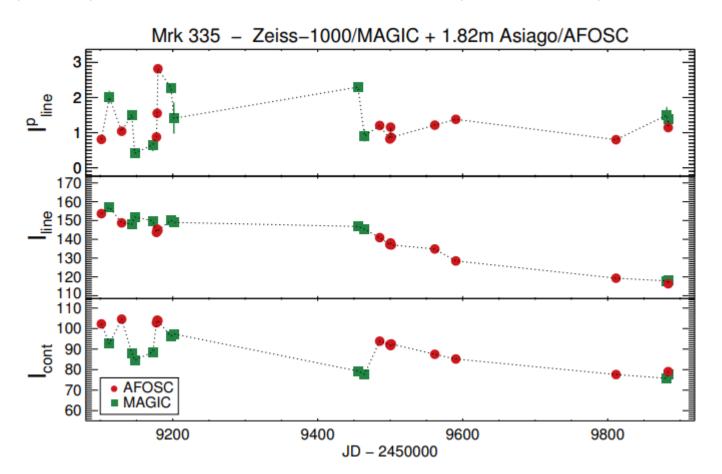
Фотометрия	Спектроскопия		Реверберация	Спектрополяриметрия	
Лаг в Нβ, дн.	V_{Heta}^2 , км 2 /c 2	λL ₅₁₀₀ , эрг/с	M_{ullet}^{rev} , $\log(M/M_{\odot})$	M^{sp}_{ullet} , $\log(M/M_{\odot})$	
$30.7^{+2.1}_{-2.3}$	1.9 × 10 ⁶	1.67 × 10 ⁴⁴	$7.049^{+0.068}_{-0.075}$	8.3 ± 0.3	

$$\mathbf{M}_{\bullet} = \mathbf{f} \cdot \mathbf{R}_{\mathrm{BLR}} \cdot V^2 / \mathbf{G}$$

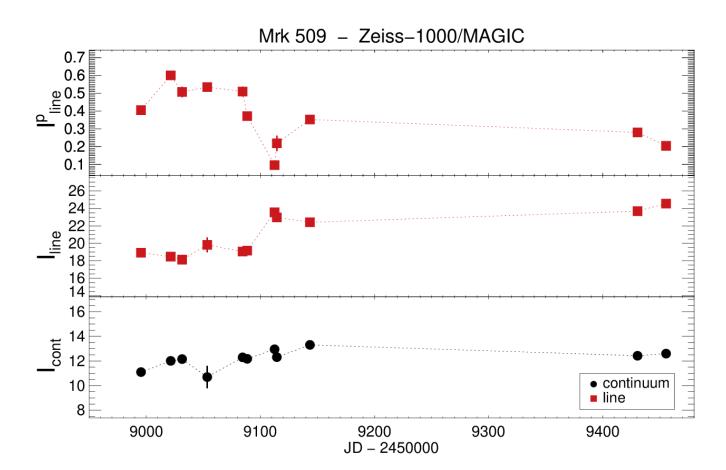
$$f \sim \frac{1}{\sin^2(i)} = 21.1 \pm 10.1$$

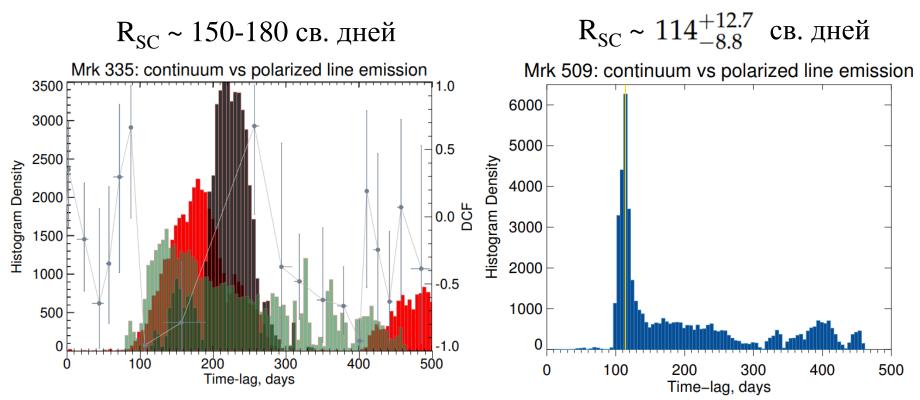

$$\frac{1}{1}$$

$$i = (14.3 \pm 3.6)^{\circ}$$


Глава посвящена спектрополяриметрическим исследованиям АЯГ VII Zw 244 и LEDA 3095839. Измерены массы СМЧД, их спины, напряжённости магнитных полей на горизонте событий, а также в комбинации с реверберацией наклон систем к лучу зрения.

Object	P	i	$\log(M_{ m BH}/M_{\odot})$	a	$\log(B_{\mathrm{H}})$	$\log(B_{ m H}^*)$	s
LEDA 309583	9 09+04	35	$7.881^{+0.153}_{-0.171}$	$0.966^{+0.030}_{-0.106}$	$4.06^{+0.24}_{-0.24}$	$3.53^{+0.26}_{-0.53}$	1.77±0.18
LLD/1307303) 0.) ± 0.4	45	$7.699^{+0.153}_{-0.171}$	$0.736^{+0.226}_{-0.368}$	$4.00^{+0.56}_{-0.34}$	$4.08^{+0.30}_{-1.08}$	1.63±0.23
VII Zw 244	1.4 ± 0.6	18	$8.069^{+0.068}_{-0.075}$	$0.996^{+0.002}_{-0.012}$	$4.29^{+0.10}_{-0.13}$	-	-
	1.4 ± 0.0	$14.3 \pm 3.6^{\dagger}$	$8.29 \pm 0.30^\dagger$	-	-	-	-


Результаты расчётов масс M_{BH} и спинов a для АЯГ. P — степень поляризации в [%], i — угол наклона в градусах, B_H и B^*_H — напряжённость магнитного поля на горизонте событий в гауссах, полученная из спектральных характеристик и из поляризационных данных соответственно, s — показатель степени степенной зависимости магнитного поля от радиуса (Shablovinskaya et al, 2022).


Проведён поляриметрический мониторинг в фильтрах, ориентированных на излучение в линии и в континууме. По задержке поляризованного излучения в линии относительно континуального измерены расстояния до области экваториального рассеяния.

Проведён поляриметрический мониторинг в фильтрах, ориентированных на излучение в линии и в континууме. По задержке поляризованного излучения в линии относительно континуального измерены расстояния до области экваториального рассеяния.

Проведён поляриметрический мониторинг в фильтрах, ориентированных на излучение в линии и в континууме. По задержке поляризованного излучения в линии относительно континуального измерены расстояния до области экваториального рассеяния.

JAVELIN-анализ и ZDCF-корреляция кривых блеска (Shablovinskaya et al, 2023)

Заключение

- 1. Адаптирована методика фотометрического эхокартирования в среднеполосных фильтрах. С её помощью для активных галактик VII Zw 244 и LEDA 3095839 определены размеры BLR $R_{BLR}=30.7^{+2.1}_{-2.3}$ св. дня и $R_{BLR}=54.8^{+8.4}_{-9.4}$ св. дня соответственно.
- Для активной галактики LEDA 3095839 по спектральным данным оценены скорость газа в BLR $\vartheta_{H\alpha} = 1.5 \cdot 10^3$ км/с, светимость $\lambda L_{5100} = 0.87 \cdot 10^{44}$ эрг/с, напряжённость магнитного поля на горизонте событий $log(B_H) = 4.06^{+0.24}_{-0.24}$ Гс и $log(B_H) = 4.00^{+0.56}_{-0.34}$ Гс при углах наклона системы $i=35^\circ$ и $i=45^\circ$. На основе данных поляриметрии и эхокартирования даны оценки массы СМЧД $\log(M_{\rm BH}/M_{\odot}) = 7.9 \pm 0.2$, спина СМЧД a $=0.966^{+0.030}_{-0.106}$, напряжённости магнитного поля на горизонте событий $\log(B_H^*)=$ $3.53^{+0.26}_{-0.53}$ Гс, а также показателя степени зависимости магнитного поля от радиуса s $= 1.77 \pm 0.18$ для угла наклона $i = 35^{\circ}$. Для наклона системы $i = 45^{\circ} \log(\mathrm{M_{BH}/M_{\odot}}) =$ $7.699_{-0.171}^{+0.153}$, спин $a = 0.736_{-0.368}^{+0.226}$, $\log(B_H^*) = 4.08_{-1.08}^{+0.30}$ Гс, $s = 1.63 \pm 0.23$.

Заключение

- 3. Для активной галактики VII Zw 244 по спектральным данным оценены скорость газа в BLR $\theta_{\rm H\beta} = 1.4 \cdot 10^3$ км/с и светимость $\lambda L_{5100} = 1.67 \cdot 10^{44}$ эрг/с. В поляризованных спектрах обнаружены признаки экваториального рассеяния и измерена масса СМЧД $\log({\rm M_{BH}/M_{\odot}}) = 8.3 \pm 0.3$ и спин СМЧД $a = 0.966^{+0.002}_{-0.012}$, напряжённость магнитного поля на горизонте событий $\log({\rm B_H}) = 4.29^{+0.10}_{-0.13}$ Гс. В комбинации с методом эхокартирования измерен угол наклона системы $i = (14.3 \pm 3.6)^{\circ}$.
- 4. Адаптирован метод поляриметрического эхокартирования в среднеполосных фильтрах на 1-м телескопе Цейсс-1000 с прибором MAGIC. Для активных галактик Mrk 335 и Mrk 509 определены расстояния до области экваториального рассеяния $R_{SC} \sim 150\text{-}180$ св. дней и $R_{SC} \approx 114^{+12.7}_{-8.8}$ св. дней соответственно.
- 5. Проведено методическое исследование прибора MAGIC, введённого в эксплуатацию на 1-м телескопе в 2020. Показано, что в режиме фотометрии для звездообразного объекта до 14 mag в среднеполосных фильтрах при *seeing* ~ 1" за 20 минут экспонирования достигается точность лучше 0.01 mag, в режиме поляриметрии лучше 0.6%.

Научная новизна

- В ходе многолетнего мониторинга впервые измерены размеры BLR-областей в объектах LEDA 3095839 и VII Zw 244 методом фотометрического эхокартирования, что позволило оценить массы их центральных СМЧД.
- Впервые в спектре галактики VII Zw 244 в поляризованном свете были обнаружены признаки экваториального рассеяния в линиях Hα и Hβ, что позволило применить спектрополяриметрический метод измерения массы СМЧД и в комбинации с методом фотометрического эхокартирования независимо определить угол наклона системы. Также на основе спектральных данных впервые дана оценка спина центральной СМЧД и величины напряжённости магнитного поля на горизонте событий.
- Впервые для галактики LEDA 3095839 из спектрополяриметрических наблюдений были получены оценки величины спина СМЧД, напряжённости магнитного поля на горизонте событий и угла наклона системы.
- Впервые для объектов Mrk 335 и Mrk 509 получены оценки расстояний до области экваториального рассеяния методом поляриметрического эхокартирования.

Научная и практическая значимость

- На примере наблюдений методом фотометрического картирования в среднеполосных фильтрах показано, что результаты не уступают спектральному методу эхокартирования, но при этом экономят телескопное время и позволяют применять методику на телескопах малого класса для картирования АЯГ.
- Представленные в работе спектрополяриметрические данные показывают возможность применения разных численных моделей генерации поляризации в континууме и линии, а значит оценки широкого набора параметров СМЧД и газа вокруг неё.
- Адаптация метода поляриметрического эхокартирования в среднеполосных фильтрах позволяет эффективно использовать малые телескопы для оценки размеров области экваториального рассеяния в АЯГ 1-го типа. Это позволит повысить точность спектрополяриметрического метода измерения масс СМЧД для большего количества ярких АЯГ, поскольку прежде R_{SC} оценивалось из допущений.

Апробация работы

Результаты лично представлялись аспирантом в виде докладов на семинарах САО, КрАО и КФУ, на конкурсе-конференции САО, а также следующих всероссийских и международных конференциях:

- The first results of the photometric reverberation project at the 1-m telescope of SAO RAS, "XII Serbian-Bulgarian Astronomical Conference", Sokobanja, Serbia, 25-29.09.2020 (устный, online)
- Измерение масс сверхмассивных чёрных дыр в ядрах активных галактик методом фотометрического эхокартирования, "BAK-2021", 23-28.08.2021 (устный, online)
- The photometric reverberation mapping of active galaxies in SAO RAS, "13th Serbian Conference on Spectral Line Shapes in Astrophysics", Сербия, Белград, 23-27.08.2021 (устный)
- Measurement of the SMBH masses in AGN by the photometric reverberation mapping, Crimean-2021 Conference "Galaxies with Active Nuclei on Scales from Black Hole to Host Galaxy", 13-17.09.2021 (устный, online)
- MAGIC for 1-m telescope of SAO RAS, "V Conference on Active Galactic Nuclei and Gravitational Lensing", Serbia, 13-17.06.2022 (устный, online)
- Polarimetric reverberation mapping of AGNs in medium-band filters, "14th Serbian Conference on Spectral Line Shapes in Astrophysics", Serbia, 19-23.06.2023 (устный, онлайн)

Список публикаций

- 1. Photometric Reverberation Mapping of AGNs at 0.1 < z < 0.8. I. Observational Technique; Uklein R. I., **Malygin E. A.**, Shablovinskaya E. S., Perepelitsyn A. E., Grokhovskaya A. A. (2019), Astrophysical Bulletin, 74, 388-395
- 2. Medium-band photometric reverberation mapping of AGNs at 0.1 < z < 0.8. Techniques and sample; **Malygin E.**, Uklein R., Shablovinskaya E., Grokhovskaya A., Perepelitsyn A. (2020), Contribution of the Astronomical Observatory Scalnaté Pleso, 50, 328-340
- 3. Measurement of the supermassive black hole masses in two active galactic nuclei by the photometric reverberation mapping method; **E.A. Malygin**, E.S. Shablovinskaya, R.I. Uklein, A.A. Grokhovskaya (2020), Astronomy Letters, 46, 726-733
- 4. Universal focal reducer for small telescopes; Afanasiev V. L., Amirkhanyan V. R., Uklein R. I., Perepelitsyn A. E., **Malygin E. A.**, Shablovinskaya E. S., Afanasieva I. V (2021), Astron. Nachr., 1, 1
- 5. Determination of the Physical Parameters of AGNs in Seyfert 1 Galaxies LEDA 3095839 and VII Zw 244 Based on Spectropolarimetric Observations; Shablovinskaya Elena, Piotrovich Mikhail, **Malygin Eugene**, Buliga Stanislava, Natsvlishvili Tinatin (2022), Universe, 8, 7, 383
- 6. Polarimetric reverberation mapping in medium-band filters; Shablovinskaya Elena, Popović Luka Č., Uklein Roman, **Malygin Eugene**, Ilić Dragana, Ciroi Stefano, Oparin Dmitry, Crepaldi Luca, Slavcheva-Mihova Lyuba, Mihov Boyko, Nikolov Yanko (2023), Universe, vol. 9, issue 1, p.52

Личный вклад автора

- Получение наблюдательного материала на телескопах 6-м БТА САО РАН и 1-м Цейсс-1000 САО РАН.
- Обработка и анализ наблюдательных данных.
- Адаптация фотометрического и поляриметрического методов эхокартирования АЯГ в среднеполосных фильтрах на телескопах САО РАН.
- Методическая работа по введению в эксплуатацию нового многорежимного фокального редуктора.
- Интерпретация полученных результатов, публикации.

Положения выносимые на защиту

- Адаптирована методика фотометрического эхокартирования в среднеполосных фильтрах на телескопах САО РАН. С её помощью для активных галактик VII Zw 244 и LEDA 3095839 определены размеры BLRобластей.
- 2. Для активной галактики LEDA 3095839 по спектральным данным оценены скорость газа в BLR-области, светимость галактики, напряжённость магнитного поля на горизонте событий. На основе данных поляриметрии и эхокартирования даны оценки массы и спина СМЧД, наклона системы, напряжённости магнитного поля на горизонте событий, а также показателя степени зависимости магнитного поля от радиуса.
- 3. Для активной галактики VII Zw 244 по спектральным данным оценены скорость газа в BLR-области и светимость галактики. В поляризованных спектрах обнаружены признаки экваториального рассеяния и измерены масса и спин СМЧД, напряжённость магнитного поля на горизонте событий. В комбинации с методом эхокартирования измерен угол наклона системы.

Положения выносимые на защиту

- 4. Адаптирован метод поляриметрического эхокартирования в среднеполосных фильтрах на 1-м телескопе Цейсс-1000 с прибором MAGIC. Для активных галактик Mrk 335 и Mrk 509 определены расстояния до области экваториального рассеяния.
- 5. Проведено методическое исследование прибора MAGIC, введённого в эксплуатацию на 1-м телескопе Цейсс-1000 в 2020. Продемонстрирована возможность реализации с этим прибором точности измерения линейной поляризации лучше 0.6% для объектов до 14 зв.в. в среднеполосных фильтрах за 20 минут экспозиции.