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Abstract. In the context of a consistent dynamic interpretation of gravitation (gravidynamics) the gravitational field 
has been divided into two components: scalar and tensor, each one interacting with its source with the same coupling 
constant. Consequently, the spherically-symmetrical gravitational field generated by a massive object (a source) 
influences test bodies as an algebraic sum of attraction and repulsion. The field energy in vacuum around the source is 
also a sum of energies of two components - purely tensor and scalar ones of gravitation. At distances from a gravitating 
object much greater than its gravitational radius, energies of each separate field component are equal to each other at 
the same point of space. 

In the bounds of the gravidynamics based on the so-called Einstein's 'linearized' equation and proceeding from 
general principles of theory of classical fields a statement (a theorem) has been formulated on the static gravitational 
field of a collapsar: a spherically-symmetric object generating a static field in vacuum can always occupy only a finite, 
nonzero volume. 

1. Introduction 

The question we wish to raise below concerns an outer gravitational field generated by a 

spherically-symmetric distribution of matter in vacuum from the point of view of a consistent 

dynamic interpretation of gravitation. We have in mind a certain spherically-symmetric 

configuration of the system 'matter + gravitational field' with any radius of the sphere filled by 

matter down to the smallest dimensions of the sphere (a compact configuration) of the order of 

GM/c2, where G is the gravitational constant and c is speed of light. The total energy of every one 

of these configurations coincides with the rest energy of the system and is denoted as Mc2. This 

paper tries to answer such a concrete question as what are limits where the outer gravitational field 

under the discussion can still be considered as static. 

One can formulate the question in another way: to what extent one can compress matter for an 

obtained configuration to have still a static field in vacuum? The paper, however, concerns mainly a 

stationary stable state of the system 'matter + gravitational field' (i.e., a collapsar), but not the very 

process surely nonstationary of the collapse, i.e., of the compression of matter to dimensions of a 

sphere with a radius of the order of GM/c2. The collapse as a process of transition of a system to a 
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more bound state is not considered here. For the present the author's aim is to study the stationary 

spherically-symmetric configuration with the greatest possible binding energy from the point of 

view of dynamic field theoretical interpretation of gravitation that we have been adhering to in our 

papers (Sokolov and Baryshev, 1980; Baryshev and Sokolov, 1984). 

2. Energy of Gravitational Field in Gravidynamics and the Static Field of Collapsar 

As is generally known, the problem of gravitational field energy exists in the General Relativity (GR) 

nearly since the moment of its discovery, and the debate (in particular) on localizability and 

positivity of this energy in GR continues up to the present. More simply, it is not clear till now how 

to understand the conservation of energy in GR. One of the most known articles on this topic by 

Zel'dovich and Grishchuk (1986) does not solve, as earlier, all the problems related to field energy. 

But these authors agree at least that one can try to explain gravitation dynamically, i.e., without 

identifying it with geometry of space-time by GR. They concluded that, all the same, as a result we 

shall come to the same GR. But not all physicists share such an opinion (see e.g. Logunov and 

Mestvirishvily, 1985; Vlasov and Logunov, 1987), in particular, when it concerns the question on 

the field of a collapsar. This static and spherically-symmetric field in vacuum around a region filled 

by matter will be discussed below from the point of view of gravidynamics (GD). Thereby, since the 

very beginning we accept as axiom here that the energy of gravitational field is localizable, positive 

and understood in the same sense as it is understood in the classical electrodynamics (ED). 

What is concretely this energy, or rather energy density, for example, in the case of the collapsar 

static field? In ED, the field energy is defined by the second power of electric and magnetic fields. 

In GD the gravitational field energy density is also defined by the second power of its field strength 

g2/G, where g is the gravitational acceleration. As we have shown in our paper (Sokolov and 

Baryshev, 1980), the field energy density near a gravitating body can be calculated by the formula 
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Where N
GM

r
    is the usual Newtons’s potential. Subsequent sections of this paper will 

consider in detail the choice of particularly this formula for the static field energy density. In this 

section it is shown to what consequences for the collapsar field the fulfilment of natural 

requirements of positiveness and localizability of gravitational field energy can lead. 

In our opinion, the old debate on the field energy is first of all a debate on our understanding (our 

'reading' or interpretation) of equations describing the gravitational field. One of the aims of this 

paper is to look from another point of view at 'old' conceptions by describing where possible in 
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detail the physical sense of equations, formulae, idealizations known for a long time. I would like to 

emphasize right now that the base of our point of view on gravitation is the consistent, dynamic, 

field-theoretic interpretation of the same 'old' Einstein's equations. (But Einstein's equations are 

written from the point of view of GR in the so-called 'linearized' form.) In GD it concerns both 

weak and strong fields eventually. 

The following shows that the choice of a correct formula for θ00 is connected with the fact that the 

gravitational field energy continuously distributed in vacuum around the Sun directly affects the 

Mercury perihelion shift. It turns out that for the right explication of such an effect in GD the field 

energy must be positive only: i.e., the localization of energy (it means that the amount of field energy 

around the Sun in any volume or in every cubic cm is definite) and its positiveness (it means that 

field energy is positive like any mass) are directly connected in GD with observations, with 

experiments. Just this fact (noticed for the first time by Thirring, 1961) sets out the possibility of 

the dynamic interpretation of gravitation for elucidation of the meaning and the value of θ00. 

But θ00 is only one, temporal component of the energy-momentum tensor (EMT) θik of 

gravitational field. The choice of the formula (1) for θ00 besides the symmetry θik = θki must take 

into account the fact that the gravitation field is massless field. In other words, the field action 

radius r is unlimited and the corresponding field quanta (gravitons) are particles with the zero rest 

mass. All this is available in ED. In ED the field masslessness is connected in particular with the 

lack of a trace of the electro-magnetic field energy-momentum tensor (EMT). Correspondingly, in 

the GD for the gravitational field EMT we proceeded from the condition 

θikηik ≡ 0,   (i, k = 0,1,2,3).                              (2) 

Where ηik = diag(+ 1, - 1, - 1, - 1) is the diagonal Minkowsky's metric tensor. Thus, for the follow-

ing, an assumption that three conditions (or axioms) θ00 > 0, θikηik ≡  0, θik = θki, which influence the 

choice of the formula for θ00 are satisfied, is of great importance. 

Since the present work concerns, as a matter of fact, the features of problem statement and this 

section will show how to answer questions posed in the Introduction, we are going to elucidate here 

in detail the sense of the so-called 'point idealization'. Ultimately, the difference between the linear 

and nonlinear GD, will be clear at once, a gravitational radius will appear as the main parameter of 

GD.  

The fact is that in any classical relativistic field theory (in ED and in GD) one may strictly 

speaking not ascribe without reserve some finite dimensions both to test particles and to particles 

which are the sources of field. In other words, only point sources or a system of point sources as a 

macroscopic gravitating body in GD may be on the right side of corresponding field equations. It is 
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connected with a specific character of Special Relativity (SR) in which all extent bodies are to be 

represented as a system of point (structureless) objects interacting with each other. 

 In particular, the 'points' with masses ma which real macroscopic gravitating bodies consist of 

(∑a ma ) are meant to be entire regions of generally macroscopic dimensions with masses ma. 

Certainly, these are not molecules, atoms, and electrons. These are large macroscopic regions 

between which basically gravitation force is acting only. In the following I shall do my best to 

emphasize and to use this fundamental conception of interacting points in SR (or in the classical 

field theory) as an initial notion of a 'gravitational charge'. Here (in the GD) a natural question 

arises: to what limits is this idealized concept useful and acceptable? 

In exposition/description of GD as in ED, it is methodologically convenient, at least at the 

beginning, to eliminate all other interactions but the gravitational one only. As was noted before, 

the most general form of a field source (a macroscopic gravitating body) is a system of point 

sources interacting with each other only gravitationally. (But one must think how to provide the 

stability of such a system – see Introduction.) At first we investigate what is here (in the GD) a 

single, stationary, or an 'elementary' point source with the mass M and with the static field in 

vacuum. One may use an analogy with the elementary point charge (electron) in the classical ED. 

Thus, every point generates around itself a static spherically-symmetric field. Let this field point 

source resting (for the reference frame definition) at the origin of coordinates. For the field creation 

it is necessary to spend some energy, i.e., the field around the point source contains some part of 

the source mass. It means that if the field energy is sufficiently large we deal with a material object 

distributed continuously (and spherically-symmetric as before) in space around. In that case in ED 

they say about electron surrounded by a 'fur-coat' of virtual photons. In ED the field around the 

point the electron will be characterized by the definite energy density Ε2/8π = e2/8πR4. When this 

density becomes comparable with the mean rest energy density mec2/R3 of the particle= electron, the 

question arises: where is the mass of the electron concentrated (in a volume ~ R3)? This is the old 

ED problem, still unresolved completely in its quantum generalization. But as is generally known, the 

classical (and linear) ED is applicable till the distance between charges is much larger than the 

classical electron radius e2/mec2. And this is conventionally a 'point' (the point source) in the classi-

cal theory of electro-magnetic field. 

In the GD there is also gravitational field with the energy density θ00 (1) around any mass 

distributed in the spherically-symmetric way. As soon as the gravitational field energy density in 

vacuum (out of the source, i.e., out of a sphere filled by matter) becomes of the order of the mean 

rest energy of the system 'matter + field' 
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in the GD the same question as in ED arises. Where, in that case, is the mass of such a 'point' object 

concentrated? Ultimately, what is the rest mass M of the gravitating body on the whole? 

It is obvious that these questions arise at distances of the order of GM/c2 - i.e., of the order of the 

gravitational radius of the 'point' source (or gravitating centre) as one can see from comparison (3). 

The estimation of the gravitational radius is made here by the same reasons as the estimation of the 

classical electron radius e2/mec2 in ED. Just as in the classical ED we may say that we deal with a 

theory much alike the classical linear ED until some point sources distribution is compressed to 

dimensions when distances between them become of the order of Gma/c2.  

For the spherically-symmetric distribution of points with the centre at the origin of coordinates it 

means that the all system (with the rest energy Mc2) of such an 'elementary' gravitating object is not 

compressed to dimensions of the order of GM/c2 or as long as the field is measured at distances 

much greater than GM/c2. Thus, conventionally a 'point' in the GD is in fact something with finite 

dimensions of the order of GM/c2. It means that at r >> GM/c2 the mass M of the point source 

includes automatically the 'mass' of the gravitational field itself generated by the source. This is the 

sense of 'point' idealization in the GD. 

It is now obvious that nonlinear GD is the GD at distances of the order of gravitational radius 

(~GM/c2) from the centre of any spherically-symmetric configuration. In accordance with the 

universal character of gravitational interaction one must consider the field itself to be the source of 

gravitational field (there is nothing of the kind in ED). On the right side of the field equations it is 

accounted for by including the gravitational field EMT in sources (a kind of the source 'splitting' 

occurs) which makes the field equations nonlinear. Accordingly, corrections to potentials arise 

which lead in particular to an entire explication of the observed effect - the Mercury perihelion shift 

(a 'nonlinear' contribution in the effect). 

Nevertheless, the question about the mass M in the nonlinear GD remains: where is the mass 

located if the gravitational field energy is positive, localizable and condition (3) is satisfied? The 

outer field of such a collapsar remains static as before. More precisely, the question concerns the 

outer static field of a compact spherically-symmetric configuration with dimension of the region 

filled by matter of the order of the gravitational radius of the whole system (GM/c2). It is this object 

which we shall call the collapsar in what follows. 

The following sections of this paper will show in more detail that it turns out that, to answer the 

questions formulated in the Introduction about static field of the collapsar, there is no necessity to 

resolve the field equations to all approximations. The essence of the matter can be cleared quite 
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precisely in the following way. Let us assume that there is such a stationary state: the collapsar with 

the radius of the sphere filled by particles (matter) close to the gravitational radius of the whole 

system (GM/c2). Let us integrate the gravitational field energy density θ00 in vacuum the integral 

going from the surface of the sphere filled by particles (with a radius rx ) to infinity and being 

equated to the total rest energy of the whole configuration 
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This equality must be correct at some finite rx ~ GM/c2. But then it should be supposed that the 

total rest mass of the gravitating object is the 'mass' of the gravitational field only. The latter is 

difficult to reconcile with assumption (2) about the 'masslessness' of gravitational field - i.e., with 

the assumption on gravitons as on particles with the zero rest-mass. Strictly speaking, in that case it 

is difficult to maintain the assumption on static character of field around the collapsar. 

Thus, proceeding from general principles (axioms) lying at the base of the relativistic field theory, 

one succeeds in formulating a statement (theorem) of the collapsar static field, the sense of which 

can be expressed in the following way: 

If the gravitational field energy is positive (θ00 ≥ 0) and if the field is really 'massless' (θikηik ≡ 0) 

then the localization of gravitational field energy means that it is impossible to compress matter 

(particles) to a sphere with a radius smaller than some finite radius, still static spherically-

symmetric field being in vacuum around this sphere. 

Our paper is dedicated entire to development of a detailed and consistent basis of this statement. 

But first I return to basic equations of GD, commenting upon them in detail from the field-

theoretical point of view. Then (and it is very important) the static field will be represented 

explicitly as a sum of two field components with equations for each of them: namely, a scalar 

component and a purely tensor component of the only gravitation field. The choice of equations of 

motion for test particles in a given gravitational field will be based on general principles. The so-

called 'linear' contribution to the Mercury's perihelion shift will be regarded. Then the choice of 

formula (1) for θ00 will be based in detail and the gravitational field energy will be represented as 

suitable positive contributions of each of gravitation components, both scalar and purely tensor 

ones. 

Ultimately, on the basis of the fact that the scalar component of gravitation by virtue of (2) is 

described by the linear equation down to r ≈ GM/c2, it will be shown that the radius of the sphere 

filled by matter with outer static field anyway cannot be less than ¼ GM/c2, the contribution of 

each field component in θ00 being positive. In that way the question on the singularity is resolved in 

the GD. 
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3. The Linear Gravidynamics and The Scalar Component of Gravitation 

A considerable part of what follows is based on ideas expressed already in papers by Thirring, 

Moshinsky, Hoopte, Fock, and others. It is evident that the relativistic theory of classical tensor 

field pretending to a complete description of gravitation will inevitably use the experience of GR by 

Einstein and of ED by Maxwell. For all this as we will see from the following that, developing the 

field-theoretic interpretation of gravitation, we adhere to the field (dynamic) interpretation of basic 

principles of this theory. In particular, we proceed from the fact that gauge transformations of 

potentials are not connected in any way with the known transformations of frame of references in 

GR. And the principle of invariance under the gauge transformations, rather than the principle of 

equivalence, must lie at the basis of the consistent field-theoretic approach to gravitation. 

When we say about some field theory that, means in the first instance it represents the field 

equations (for example, Maxwellian equations) - just as the Einsteinian GR represents first of all 

the equations at the basis of this theory. But it is impossible to understand the usual form of the 

Einsteinian equations in the non-geometrical way. In latter there already is a curvature, i.e., the 

curved space-time. Ultimately it defines the geometrical description of test particle motions in 

gravitational field (i.e., in the curved space-time of GR), it defines famous geodesic equations. 

Everybody agrees that the dynamic interpretation of Einsteinian equations begins in case of rather 

weak fields. 

By the linear GD I mean all cases when gravitational field can be assumed weak. In that case 

distances between particles ('gravitational charges') must be much greater than their gravitational 

radius, and gravitating points may be assumed to be real point structureless objects for which, in 

particular, the mass conservation law is fulfilled: i.e., 
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Where μ = Σα maδ(r - ra) is the gravitating points mass density. Particles in linear the GD can have 

any velocities up to relativistic ones. The natural wish for generalization of the Newtonian 

gravitation up to relativistic velocities leads to this first (rather simple) part of GD, i.e., to the 

relativistic theory of gravitation in flat space-time (the relativistic gravidynamics).  

   Let us begin with the simplest case of a sourceless tensor field. As is known, a symmetric tensor 

of the second rank consistent with the Klein-Gordon theory - namely, 

                                                                     Φik = 0                                                                        (6) 

describes a massless field (particles with spin 2) which we need, if the following conditions are 
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satisfied: 

Φik
,k = 0 ,                                                                     (7) 

ηikΦik = 0  ,                                                                 (8) 

Equations (6) together with the 5 invariant conditions (7), (8) define the Φik accurate up to the gauge 
transformation of the potentials 

      Φik → Φʹik = Φik + Ai,k + Ak,i   .                                             (9)  

Where Ai is a vector field consistent with the conditions Ai = 0 and Ai
,i = 0 (here Φik ≡ - Φik,l

l). 
One can construct (or postulate, if it is wanted) a more general form of a linear differential 

equation of second order for the symmetric tensor Ψik = Ψki , demanding directly an invariance of 

these equations under the transformation (9). We obtain eventually equations coinciding in form 

with those usually called in GR the 'linear form' of the Einsteinian equations (the left-hand side): 

– Ψik,l
l + Ψil,k

l + Ψkl,i
l – Ψ ,ik + ηik(Ψ ,l

l – Ψmn
,mn) = 0                       (10) 

For all this the numerical value of the factor (+1) before the brackets is fixed by the condition of 

identical equality of the left-side divergence to zero, which is a consequence of the same invariance 

under the gauge transformations group (9). 

The consistent dynamic interpretation of these equations is that field potential Ψik (just as in ED) 

is understood irrespective of the metric ηik. In particular, there is no such a condition like Ψik << ηik. 

The potentials Ψik by themselves have as little sense as 4-potentials in ED. They may have any 

value because of their uncertainty according to (9). 

Generally speaking, one can write down the gauge (gradient) transformation group under which 

equation (10) must be invariant, in more general form (but which does not coincide outwardly with 

the well known group of infinitesimal transformation in GR): 

Ψik → Ψʹik = Ψik + Ai,k + Ak,i + Λ ,ik    ,                                        (10a) 

with 5 arbitrary functions Ai (4-vector) and Λ (scalar). Then to obtain equations like (6) from the 

general equations (10) (for particles/gravitons with spin 2 only) it is necessary to require the 

satisfaction of 5 gauge conditions like (7), (8) at once, for the 'gauging/calibrating ' scalar Λ and 

vector Ai fields satisfying the equations 

Ai + Al,i
l = ji  ;              Λ = Ψ + 2Al

,l   .                                   (11)ʹ 

Where ji ≡ Ψil
,l – Ψ ,i (Ψ ≡ ηikΨik) and ji

,i = 0 according to field equations (10). 

   The field Lagrangian, which the equations (10) are obtained from, is of the form: 
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Z = a(FlmnFnml – Fmn
mFln

l) + b(Ψlm,nΨnm,l – Ψmn
,mΨln

,l)   ,                        (12) 

where Flmn = Ψln,m – Ψlm,n and the value of a depends on the choice of the measurement units for the 

potentials Ψik (see below). The expression in the second bracket is reduced to the divergence and 

does not influence the field equations for any b. (By variation of the values of a and b one can 

obtain all Lagrangians met in literature which the same equations (10) follow from.)  

    The interaction between the field Ψik and its source Tik is described by the Lagrangian 

2
ik

ik
f T

c
   ,                                                                       (13) 

where  f  plays the role of an interaction constant or coupling constant and is defined specifically at 

the choice of the measurement units for Ψik , and Tik corresponds in the considered case of the linear 

GD to an EMT of the system of point (structureless) objects-particles. That is here  

Tik = μcuiuk ds
dt

  ,     ds = c dt 2 21 v / c    , 

where ui is the 4-velocity and v is the usual velocity of the particles. I emphasize once more that we 

consistently adhere to point idealization for gravitational field sources (μ = Σα ma δ(r - ra)) as an 

initial notion of the theory. 

 One can obtain a general form of field equations with sources in the linear GD by virtue of the 

action 

2

1 ( )ik
ik

fZ T d
c c

    

 (the sources motion is assumed to be specified), which leads to the field equations in the form of: 

–Ψik,l
l + Ψil,k

l + Ψkl,i
l – Ψ ,ik + ηik(Ψ ,l

l – Ψmn
,mn) = – 22

f
ac

Tik   .               (14) 

Because of general character of these equations they cannot, however, to be applicable directly to 

solve some concrete problem; for example, to find the field of only one point source. Both the 

symmetric tensor Ψik by itself and equations (14) describe a whole 'mixture' of fields - this is 

simultaneously scalar, vector and tensor fields. In that case they say about 'the mixture' of fields 

with different spins ([Ψik] = 0   0   1   2), see, for example, Sexl (1967). This property must 

also be attributed to the tensor source Tik on the right-hand side of (14). But the identical equality of 

divergence of the left-hand side of these equations to zero, or, in other words, gauge invariance 

(10a), demands the fulfilment of the conservation law for the tensor source (so-called 'strong' law) 
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Tik
,k = 0,                                                                 (15) 

as in ED the fulfilment of the conservation law for the 4-current ji
,i = 0 is a consequence of the 

gauge (gradient) invariance of the Maxwell's equations. Equality (15) means that the vector 

component of the field Ψik may be regarded as dependent since the corresponding vector source is 

absent (or, a vector field may be only virtual…). 

Of course, in the linear GD approximation, when gravitational interaction between particles may 

be assumed weak, the equality (15) is fulfilled only approximately. An exact conservation law (Tik + 

θik),k = 0 will be true only for the sum of the source EMT (Tik + θik). That is just a consequence of 

relativistic invariance of the field equation (14), but not the gauge one. But as was noticed in the 

previous section, in the linear GD the strong field as a source is automatically included in the notion 

of a 'point' source with some mass M  (there is no 'splitting'). Then the field Ψik in (14) is the field at 

distances much greater than GM/c2 for each source in the right side (for the weak field), and 

equality (15) must be regarded as a consequence of gauge invariance of equations (14). 

 Thus, if we approximately regard the sources in the right-hand side of field equations (14) as the 

point sources with given masses, then, allowing for the gauge invariance of these equations, one 

can bind the vector component of the field Ψik by the gauge condition (the Hilbert-Lorentz gauge 

condition): 

Ψim
,m = ½ Ψ ,i      ,                                                          (16) 

and below we regard the vector field in Ψik to be dependent (so we 'exclude' the vector component 

of Ψik). In that case, the field equations (14) are transformed to the form 

  Ψik = – 22
f

ac
(Tik – ½ ηikT)    ,                                                 (17) 

where T = ηmnΤmn is a scalar presenting the trace of the sources EMT. It is impossible, in particular, 

to demand the satisfaction for Ψik of the 5 invariant conditions (7), (8) at once ('to exclude' also the 

scalar Ψ) for equations (14) because of the fact that T ≠ 0. [Just the nonzero trace of the sources 

EMT (the scalar) permits an assuming that the scalar Ψ cannot be always only a virtual field.] 

The system of equations (17) still describes 'the mixture' of fields but the amount of components 

of this mixture is now less because of condition (16). And now we separate explicitly these 

components presenting equations (17) in the form of an equivalent equation system for each 

component separately - scalar and purely tensor ones. 

Let us present the potential Ψik in such an invariant form distinguishing explicitly between scalar 

and tensor components 
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Ψik ≡ Φik + ¼ ηikΨ     ,                                                        (18) 

where Φikηik
  ≡ 0 and Φik describes now the tensor component in the field Ψik, as well as  invariant 

tensor ¼ ηikΨ describes only scalar component.  
   In exactly the same way one can manipulate with Tik : 

Tik ≡ Tik
(2) + ¼ T    ,                                                               (19) 

where Tik
(2) ηik ≡ 0 for the sources Tik

(2) of the tensor component Φik in the field Ψik . 

Convolution of equations (17) by indices yields an equation only for the scalar part of the field 

Ψik. If one now substitutes expressions (18) and (19) in (17) and uses the equation for the scalar part 

then one can obtain an equation only for the tensor component of gravitation also. As a result we 

obtain 

                                                                   22
f T

ac
     ,                                                         (20)* 

                                                                  (2)
22ik ik

f T
ac

      .                                                   (21)* 

The Hilbert-Lorentz gauge condition (16), written down now in the form Φmn
,m = ¼ Ψ ,n, excludes 

as before the vector component of gravitation. 

Thus we have formulated the basic equations in the linear GD which will be naturally generalized 

below for strong fields, i.e., when sources cannot be already represented as  systems of only 'point' 

structureless objects and 'a splitting' of them into a 'field' part and a 'point' one will be needed. But 

the main conclusion from equations (20)* and (21)* is the following: gravitation in the GD has two 

components: scalar and tensor ones each interacting with its source with the same coupling constant 

f. In our opinion it is this condition which is the essence of the dynamic interpretation of equations 

of type (10) or (14), and this is a radical difference of the approach developed by us from different 

versions of alternative theories (the scalar-tensor one, bimetric formalism, etc.). 

4. The Outer Field of a Massive Gravitating Centre at Distances of r >> GM/c2. 

Motion in Given Field 

Section 2 has mentioned that in the consistent GD description it is convenient, at least at the 

beginning, to eliminate all interactions except the gravitational one. A gravitating 'body' in the right-

hand side of the equations (*) (20* and 21*) is in fact a system of point sources interacting only 

gravitationally. All the more, in the linear GD one can obtain the field of any system of point 

sources (both inside the system and outside it) as a superposition of fields of such 'elementary' 

sources. Furthermore, the gravitational potentials of the point objects coincide with the potential of 
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real spherically-symmetric bodies.  

But we begin with gaining an understanding of what this spherically-symmetric and static field of 

only one 'elementary' motionless point source in the origin of coordinates is. One can obtain the 

EMT of the mass M point particle located in the origin of coordinates from the general expression 

for 2 2 21 vik i kT c u u c  , in which one must take for the  particle with the mass M in the origin 

of coordinates 

μc2 = Μc2δ(r - rΜ) = Μc2δ(r). 

Hence, for the point source in the centre we have 

                                                        Tik = Mc2 δ(r) diag(l, 0,0,0).                                                    (22) 

Here the frame of reference is fixed at last: i.e., this is the frame of reference (inertial, of course) of a 

body of reference + generally speaking any frame of coordinates in which the source-particle (the 

body of reference) rests in the origin of coordinates (rΜ = 0 and v = 0). 

Since the source is at rest, the field must be static, centrally symmetric, and the system of the 

equations (*) will be rewritten as 

                                                         
2

2 2

1 [ ( )]
2

d fr r T
r dr ac

     ,                                                    (23) 

                                                         
2

(2)
2 2

1 [ ( )]
2ik ik

d fr r T
r dr ac

      ,                                              (24) 

For the scalar source T from (22) we have 

T = ηikTik = Mc2 δ(r)   ,                                                        (25) 

and equation (23) for the scalar field Ψ(r) has the solution 

1( )
8
fMr

a r
     ,                                                               (26) 

consistent with the additional boundary condition: the scalar potential must be zero at infinity.  

   For the purely tensor source T(2)
ik from (19) and (22) we have (in case when r >> GM/c2 or when 

the total mass of the source is assumed to be in the centre): 

T(2)
ik = ¾ Mc2 δ(r) diag (1, 1/3, 1/3, 1/3)   .                                                (27) 

In that case the solution of equation (24) with the same boundary condition (the potential at infinity 
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must be zero) will be the tensor field  

Φik(r) = Φ00(r) diag(1, 1/3, 1/3, 1/3)  ,                                               (28) 

00
3 1( )
2 16

fMr
a r

     ,     r >> GM/c2 . 

Thus the static field of a massive point in the origin of coordinates is described by two potentials 

(which are functions of r), namely, 

                                   ( ) Cr
r

       and     00
3( )
2

Cr
r

   ,          if      
16

fMC
a

 . 

And one can unite it, if desired, in one single tensor field: 

                                    3 1 1 1 1(1, , , ) (1, 1, 1, 1)
2 3 3 3 2ik

C Cdiag diag
r r

        = 

                                 1 (1,1,1,1)
16

fM diag
a r

  .                                     (29) 

And there is already no ambiguity or arbitrariness connected with the gauge invariance. The static 

potential (29) is determined quite uniquely (of course without allowing for radiation incident from 

outside) by gauge condition (16) and by the additional condition: Ψik must be zero at infinity. 

Evidently, the solution (29), so as (26) and (28), can be quite applicable as description of outer 

field outside the sphere of the radius r0 filled by matter with any centrally symmetric distribution of 

mass ρ(r). In that case one can take right away the EMT of a macroscopic body (as a continuous 

medium) in the form ρc2uiuk as the source in the right side of field equations. Here ρ is now the 

body mass density and ui is some element average 4-velocity of (macroscopic) 'elementary' 

volumes of averaging. For the static case or if macroscopic motions are slow, the EMT of a 

gravitating body will be of the form ≈ ρc2 diag(l, 0, 0, 0). Solving the field equations one can find 

both an inside solution and an outside one. The outside solution for any r ≥ r0 will be determined 

only by the total mass inside the sphere r = r0 and will coincide with the solution (29) simply 

because of the Poisson's equation property for centrally symmetric ρ(r): 

0

0

2

0

4 ( ) ( )
r

V

r r dr M M r dV       ,  

where V0 is a volume of the sphere with the centre in the origin of coordinates. In that case (as in 

the Newtonian gravitation) the dimension of the gravitating body is of no importance, of course, till 
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the configuration is negligible in comparison with the total rest energy Mc2. 

In accordance with the more consistent discrete conception of gravitating bodies accepted here 

(in the GD), it means that 'points' with masses ma inside the body are located at distances from 

each other much greater than Gma/c2. Hence, till this configuration is quite far from the dimension 

of the order of GM/c2 and the masses ma of the 'points' are the masses of rather large (macroscopic) 

regions indeed, then an antipressure needed to secure the stability of such a sphere is simply an 

elasticity of matter which these regions consist of. In other words, here some nongravitational 

interaction is meant which defines the equation of matter state. 

Let us now consider the motion in a given field. As was noticed before, the interaction of the 

field Ψik with particles is described by the scalar (f/c2)ΨikTk (13) and one can obtain the particles 

motion in field from the action 

 

                                              2

1 ( )ik ik
ik ik

fS T T d
c c

         ,                                                (30) 

which gives for test point particle with the mass m 

( )i k
ik

fmS mcds u dx
c

       .                                                     (31) 

If we compare this with the action for a charged particle in a given electromagnetic field and 

introducing the 4-vector 

                                                        A(g)
k ≡ Ψikui   ,                                                                      (32) 

we can write the action for a particle in a given gravitational field in the 'electrodynamic' form 

                                                  ( )( )g k
k

eS mcds A dx
c

       ,                                                       (31)' 

where e ≡ fm. A variation of (31) or (31)' (as in Landau and Lifshitz, 1973; and see detail in paper 

by Baryshev and Sokolov, 1983) gives equations of motion that are convenient also to be written 

down by the vector ( )g
kA  in the same 'electrodynamic' form 

                                                   ( ) ( )
, ,( )

i
g g k

k i i k
du emc A A u
ds c

    .                                                         (33) 

To emphasize that in GD one can use explicitly the conception of force, as in ED, one can even 

introduce the 3-dimensional vectors 

E(g)
( )

( )1 A g
g

c t



  


  ,               H(g) ≡ A(g)   , 
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where φ(g) ≡ –A0, A(g) = –Aα (α = 1, 2, 3). Then 3-dimensional equations of motion from (33) 

coincide by form with the Lorentz force and with the equation for energy in ED 

pd
dt

 = e ( E(g) + 1
c

[v · H(g)] ) ;        kindE
dt

 = e(E(g) · v)  .                              (34) 

   The fact that in (30) Tik enters both the 'inertial' part of action and the 'gravitational' one, is a 

direct consequence (or rather a generalization) of equality of the inertial mass minert of particles and 

the gravitational one mgrav ( minert  = mgrav ). Thus, if from the very beginning we proceed directly 

from the experimentally tested law of equality of the inertial mass and the gravitational one for test 

bodies understood in GD as point (structureless) objects but not from the 'equivalence principle', 

then equations (33), introduced for the first time in GD by Birkhoff (1944), can be a perfectly 

relativistic generalization of the Newton's equations of motion 

v grav
N

inert

m
m

    , 

where   mgrav = minert ≡ m . 

One can now write an expression for a force acting on a motionless test particle located in the 

field (29), explicitly presenting this force as the sum of forces: F(2) is the force connected with the 

tensor component of field (28) and F(0) is the force connected with the scalar component (26). To 

do that it is convenient to use the 4-vector A(g)
k (32) and the equation of motion from (34). If the 

particle is at rest or, generally speaking, moving but very slowly (v/c ~ 0), then for each term in 

(29) only 0-component of correspondent 4-vectors will be nonzero. I.e. (further the symbol g is 

omitted for φ(g)) 

  (2)
3
2

C
r

        and   (0)
1
2

C
r

    . 

Correspondingly, for the forces we have 

(2)
(2)

rF
d

e
dr r


         and      (0)
(0)

rF
d

e
dr r


    .                         

And if we connect the constants f and a with the Newtonian gravity constant G like this:       

G ≡ f 2/16πa,  one can write for each of forces separately 

                                  (2) 2

3
2

rF GmM
r r

      and     (0) 2

1
2

rF GmM
r r

        .                                    (35) ' 
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It produces as a result the usual good old Newtonian law :-) 

(0) 2

GmM
r r

 (2)
rF = F + F  ,                                               (35) 

i.e.,  the attraction in the sum. 

Thus, here I would like to emphasize that even at  r >> GM/c2  the static, spherically-symmetric 

gravitational field in vacuum, generated by a massive object in the centre (in particular, by a quasi-

static, centrally-symmetric distribution of mass with the density ρ(r)) as the physical action on test 

bodies is an algebraic sum of the attraction F(2) (the gravitational tensor component proper) and the 

repulsion F(0) (the scalar component of gravitation). The foregoing has shown that this property 

follows the most general principles lying in the base of the dynamic interpretation of the 

gravitational field. Or rather (35) must be considered as a direct consequence of the conclusion 

formulated at the end of the previous section for the case of weak field. 

A description of interaction between a particle of a given rest mass m moving with some velocity 

v, and centrally-symmetric field (29) of a motionless massive centre, can be obtained from action 

(31) in which the quantity 

                       
2 2

2 2 2
00 2 2

(1 v / )1 v /
1 v /

cL mc c fm
c


    


                                                           (36) 

is an analogue of the Lagrange's function with Ψ00 ≡ C/r. An explicit separation of the test particle 

interaction with both components of the field allows writing down L in the form 

                
2 2

2 2 2 2 2
00 2 2

(1 v / 3 ) 11 v / 1 v /
41 v /

cL mc c fm fm c
c


       


 .                                 (36)' 

The equations of motion of the particle in the centrally-symmetric field accurate up to terms of the 

order of v2/c2 << 1 follow directly the Lagrange's function  

      
2 2 2

2

v 1 v 3 v
2 4 2 2

) ( )( N N
m mL m m

c
      ,                                           (37) 

2 2 2

00 00 2

v 1 1 v 5 1 v
2 4 4 2 6 8

( ) ( )m mL fm fm fm fm
c

           ,  

the expression for which can be obtained from (36) by expansion into a power of (v/c) series up to 

terms of the second order inclusive. And it was taken into account here that (v2/c2) and (φN/c2) are 

terms of an equal infinitesimal, when the particle moves by action of gravitational field only. (A 

small addition in (37) to the classical Lagrange's function only depends ultimately on r, if v is 
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expressed by the velocity of the undisturbed Kepler problem.) 

Here we come close to the explication of the Mercury perihelion shift effect in GD connected, in 

particular, with the choice of θik - the EMT gravitational field. In GD this effect is in fact an 

algebraic sum of two effects: 

(1) The first (linear) effect arises because relativistic corrections of the order of v2/c2 are allowed 

at the test particle motion in the static field of a massive centre. In point of fact this effect is 

connected a relativistic lag of gravitational interaction between the Sun and the Mercury at motion 

of the latter by its orbit. 

(2) The second (nonlinear proper) effect is connected with corrections of the tensor potentials 

(Φik) of a massive centre (corrections of the temporal component Φ00) which arises when allowing 

gravitational field continuously distributing positive energy around the Sun. It is this part of the 

effect that depends on the correct choice of the formula for θ00, which will be the question in the 

next section. 

Here we only explain the first effect arising due to the test particle interaction with the field (29) 
(with the 2 components). Considering the Keplerian motion (m<< M) with a small addition 

2 2

2

v 3 v
8 2

( )N
m m

c
  

to the classical Lagrange's function we obtain the value of the perihelion shift δφι equal to 

                                                          
2

1 2

7 /
(1 )

GM c
e a


 


  .                                                        (38) 

In this formula (for the perihelion shift only) a is the usual semi-major axis designation of the 
orbit and e – orbit eccentricity. 

Other effects (the light deflection in the solar field, the lag of a radio signal in the same field, the 

gravitational drift of atom frequencies = the gravitational red shift) are considered in detail in the 

paper by Mosinsky (1950) and in the paper by Baryshev and Sokolov (1983) using the same 

nomenclature that is accepted here. The light deflection and the signal lag (i.e., the interaction 

between electromagnetic field and a given gravitational field) is understood in GD as interaction 

between light and a non-homogeneous matter 'medium' with the refraction index   

2/1 2 GM cn
r

   

and, correspondingly, with the velocity of light propagation in this 'medium' cg = c/n. Both this 

effects arise because of the interaction only with the tensor component of gravitation since the 

corresponding scalar in 
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( ) ( ) ( ) ( )2 2 2 2

1
4

ik ik ik ik
ik el ik el ik el ik el

f f f fT T T T
c c c c

        

is identically equal to zero (ηikΤ(el)
ik ≡ 0) to account of the property of Τ(el)

ik - the EMT of  

electromagnetic field. 

A rigorous description of the gravitational frequency shift demands consideration of the atoms 

behaviour in gravitational field. The cause of the frequency change (the gravitational red shift) of a 

photon radiated by an atom is the shift of the atom quantum levels as a result of electromagnetic and 

spinor fields interactions with a given gravitational field (Mosinsky, 1950). The result of a rigorous 

analysis gives the effect value equal to Δv/v = – GM/c2r which coincides with the experimentally 

measured one. 

5. Energy of the Central Source Static Gravitational Field   

This section shows in detail why formula (1) for θ00 was chosen as the temporal component of the 

spherically-symmetric field EMT of any massive gravitating centre. The energy of each component 

of gravitation (Ψ and Φik) will be found separately. 

The EMT of gravitational field (without gravitational charges in it) was found in the GD in the  

paper by Sokolov and Baryshev (1980) where we used the following limitations as additional 

conditions for its choice: l) the obtained EMT must be symmetric (θik = θki); 2) θik must have the 

trace (ηikθik ≡ 0) identically equal to zero, whith is connected with the 'masslessness' of gravitational 

field; 3) it must always give the positively determined gravitational field energy density (θ00 ≥ 0); 4) 

the last condition concerns each of its components separately (i.e., θ(0)
00 ≥ 0 and θ(2)

00 ≥ 0). 

But general principles alone are apparently not sufficient for the gravitational field energy density 

value final choice. To the opinion of investigators who tried to look at this question (Thirring, 1961; 

Sexl, 1967), the account of the positive gravitational field energy continuously distributed in space 

around a central source gives an appreciable contribution comparable by order of magnitude with 

observations of planets orbit perihelion shifts δφ in the Sun gravitational field. It is the effect which 

cannot be described by allowing for only the relativistic lag of gravitational interaction. In other 

words, as was noted in quoted papers, the effect of the Mercury perihelion shift demands  

consideration of the so-called gravitational potential 'nonlinear' correction, arising because of 

account of the gravitational field EMT itself in the equations (20*, 21*) right-hand side. Naturally, 

we used this circumstance and chose in a sense the simplest expression for the EMT of the possible 

ones satisfying 4 conditions mentioned above, and which leads (as it turned out) to explication of 

the observed Mercury perihelion shift for 100 years. I.e., we directly used the fact that in GD the 

choice of θik is limited by experiment too. 
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To obtain the EMT (in particular, in the so-called 'canonical' form) one must proceed from the 

gravitational field Lagrangian (12) alone. And one must take into account that the vector 

component of the field Ψik is absent in it, i.e., the Hilbert-Lorentz condition Ψim
,m = ½ Ψ ,i  (16) is 

satisfied. Besides, to obtain the canonical EMT in a symmetric form at once, one must choose the 

constant b in the field Lagrangian (12) in front of a negligible divergence addition like this: b ≡ a. 

Thus, the Lagrangian (12) is reduced to the form 

Z = aΨmn,lΨmn,l – a ½ Ψ,mΨ,m  ;                                               (12)' 

or, if to separate explicitly the purely tensor Φik and scalar Ψ components of the field Ψik  

(if Φik ,k = ¼ Ψ,i) we obtain 

Z = aΦmn,lΦmn,l – a ¼  Ψ,mΨ,m   ,                                              (39) 

Hence, we have for the symmetrical (and canonical) EMT 

   tik = 2a(tik
Φ – ¼ tik

Ψ)     ,                                                           (40) 

where 

tik
Φ = Φmn,iΦmn

,k – ½ ηikΦmn,lΦmn,l  , 

tik
Ψ = Ψ,iΨ,k – ½ ηikΨ,mΨ,m  . 

If now one calculates the value of t00 for the gravitational field around a massive centre with the 

use of (26) and (28), we obtain already the result coinciding with the formula (1): t00 = 

( φN)2/8πG. 

However, the point is that the definition of the canonical EMT as a conserved quantity is still 

ambiguous: why exactly this EMT and not any other one? In particular, by means of a certain 

arbitrariness at the choice of the EMT one can redefine so (see, for example, Medvedev, 1977, p. 

206) that a new tensor should have the trace identically equal to zero, which corresponds more to 

properties of the field under discussion. Thus, a hope appears to choose the unique EMT from an 

infinite set of various ones with the help of another general condition. 

And however, if to redefine now at once the EMT into form (40) with Lagrangian (39) so that a 

new tensor should have no trace, then as a result we shall obtain the field energy density with 

(generally speaking) an uncertain sign. In particular, for the static field we come to an absurd result: 

energy of this field is equal to zero everywhere. (The fields Φik   and Ψ are still connected by the 

condition Φik ,k = ¼ Ψ,i  , see below… ) 

If we calculate the field EMT, it is more logical to proceed from the notion of free field, e.g. 

away from its source. But for an interacting field (with its source) one may not speak by definition 
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about any conserved quantities, including the conserved complex of the field energy-momentum. 

Only for the pure case of free field one can introduce dynamic (or conserved) quantities 

characterizing the system. These are like quantum numbers. Hence, it follows from the notion of 

the free field of a definite spin meaning that we deal with the field Ψik which is a mixture of the 

purely tensor and scalar free fields (but interacting with matter by the same coupling constant in 

general). 

Besides, the energy density of static gravitational field around a massive object which is 

ultimately to be calculated by means of the field EMT obtained expression, is most likely to be 

unchangeable and equal to ( φN)2/8πG. In spite of ambiguity of the field EMT canonical 

definition, its temporal component (in accordance with its physical sense) must uniquely determine 

some certain part of the system 'matter + field' total energy (Mc2), but outside the sphere filled by 

matter. (Here, in the GD, we can proceed from the notion of field energy accepted in ED...) As it 

will be shown below, the corresponding addition to the Mercury perihelion shift is just connected 

with the fact that a certain part of system energy (energy outside the sphere of the radius r around 

the Sun) is as if 'excluded', and at the distance r from the Sun (in vacuum) an effective decrease of 

the massive central body mass occurs by the factor of (1 – ½ GM/rc2).  

   So, the equations of free gravitational field away from its sources are obtained from equations 

(20*, 21*): 

0
0ik

  
  




                                                              (41**) 

Far from the sources one may completely assume the field Ψ and Φik to be independent and free, then 

one can obtain each of the equations noted by (41**) by independent variation of corresponding 

parts in Lagrangian (39). 

But if the fields Ψ and Φik are really independent then, generally speaking, they must not already 

be scalar and tensor parts of some unique tensor Ψik = Φik + ¼ ηikΨ (Φm
m ≡  0) consistent with the 

Hilbert-Lorentz condition Ψik
,k = ½ Ψ,i , which connects two fields Ψ and Φik (Φik ,k = ¼ Ψ,i). Such a 

connection is natural in (12)' or in (39), when the fields Ψ and Φik: interact with its sources. 

The third section has mentioned already that when considering the free field in vacuum one can, 

even on the level of Lagrangian (12) with field equations (10) by means of gauge transformation 

(10a), separate himself from scalars and vectors, independently of anything, demanding the 

satisfaction of 5 gauge conditions (7) and (8) (with the help of the arbitrary scalar Λ and vector Ai) 

to obtain equation Φik = 0 at once. That is to say, in vacuum for the free field (i.e. without direct 

interaction with sources of field) we have the right to demand independently the satisfaction of the 
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5 conditions for the tensor field Φik only right away in form 

Φik ,k = 0    and    ηikΦik = 0.                                                 (41) 

The first (vector) condition is true now not because of the equation □ Ψ = 0 for the scalar field (as if 

the connection Φik
,k = ¼ Ψ,i exist as before) but directly as the gauge condition excluding the vector 

field. In conformity with this pure case, one can obtain both the field equations and the EMT of the 

tensor component from Lagrangian 

aΦmn,lΦmn,l  ,                                                              (42) 

which follows from (12) and fulfilment of conditions (41). Hence, the EMT of such a free field (of 

the determined spin) can be obtained from the corresponding part of (40) if to redefine the canonical 

EMT (see details in Medvedev, 1977; Sokolov and Baryshev, 1980) so that it should have the trace 

identically equal to zero (and owing to □ Φik = 0 too): 

θik
(2) ≡ 2atik

(2)    ,                                                        (43) 

where 

tik
(2) = 2/3 Φmn

,iΦmn,k – 1/6 ηikΦmn,lΦmn,l – 1/3 ΦmnΦmn,ik 

The independent scalar field Ψ is by no means excluded because of gauge conditions (41) for the 

purely tensor field. As follows from the equation (20*) in the system (20*, 21*), in principle the 

scalar field can be radiated by the corresponding part (the coupling constant f is the same) of the 

same source and afterwards become the free field independently of Φik (in the linear GD). That 

cannot be said of the vector field which is not radiated at all because of conservation law (15), i.e., 

because of the vector source absence. 

The possibility of radiation of scalar (longitudinal) waves is a separate question, it will be 

mentioned below. It is now important that the equation for a free scalar field □Ψ = 0 in (41**) is 

obtained from the second term in (39), both the value and the constant sign to be not essential. It is 

necessary only that the scalar and tensor in (39) should be measured ultimately in identical units. 

This is connected once more with the genetic connection essence of these fields as both components 

of gravitation field interacting with matter by the same coupling constant f. 

But for obtaining the EMT of the independent and free scalar field the negative constant before its 

Lagrangian in (39) does not fit. First of all, it leads to negative energy of the Ψ-field and, second (as 

it was said above), in sum with energy of the tensor field Φik it gives an uncertain sign of gravitation 

field energy in whole.  

Hence, for the positive definiteness of energy one must take the free scalar field Lagrangian in the 
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form 

+ a ¾ Ψ,m Ψ,m ,                                                               (44) 

with the same equation for free scalar field □Ψ = 0 (without a direct interaction with sources). The 

selection of the constant ¾ is connected here with the requirements (the axiom also) mentioned 

above, i.e., that the field energy density in vacuum or around a massive gravitating centre must 

coincide with one which the canonical (also symmetrical) EMT (40) gives in that case. Hence, one 

can obtain for the EMT of the scalar field with the trace identically equal to zero  

θik
(0) ≡ 2 atik

(0)  ,                                                               (45) 

where 

tik
(0) =1/2 Ψ,i Ψ ,k – 1/8 ηik Ψ,mΨ,m  – 1/4 ΨΨ,ik  . 

Thus, the EMT of gravitational field is a sum of tensors concerning the scalar and tensor 

components of the field 

θik = θik
(2) + θik

(0) ≡ 2a(tik
(2) + tik(0))  .                                              (46) 

This sum is consistent with the above mentioned requirements (axioms): θik = θki, θm
m ≡ 0,   θ00 ≥ 0, 

θ(0)
00 ≥ 0 and θ(2)

00 ≥ 0 (one can become sure of the latter by direct calculation).  But besides, 

everywhere we adhere to the idea that it is necessary to proceed not only from Lagrangians whose 

choice is always ambiguous by definition (as is seen in (12)), but from the field equations which 

follow them and which are tested afterwards in experiments.  

   From (43) and (45) one can now obtain for the static field tensor and scalar components (28), (26) 

for a central source: 

                    
2

00 ,
(2) , 4

1 1
6 2

mn l
mn l

Ct
r

     ,  
2

00 ,
(0) , 4

1 1
8 2

m
m

Ct
r

     ,  with   
16

fMC
a

 .   

One more property must, therefore, be added for the found field EMT to the properties mentioned 

above. It turns out that (at least when r >> GM/c2) field energies of each component separately are 

equal to each other in the same space point  

2 2
00 00
(0) (2) 4

( )1 1
2 8 16

N GM
G r


 

 


     ,                                         (47) 

if the connection G ≡ f 2/16πa  for the constants G, f and a follows from Newtonian law (35). 

Property (47) for fields (26) and (28) is connected to a certain extent with the choice of the 

gravitational field EMT. The fundamental character property θ00
(0) ≡ θ00

(2) (47) is to be tested in 
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future. But of principle is the fact that in that case the planet orbit perihelion shifts δφ is completely 

accounted for. 

Let us return again to basic equations (20*, 21*) with sources in connection with the main aims of 

this article: the static collapsar field in GD, the energy problem for gravitational field, and the 

nonlinear GD. (What is the rest mass of a gravitating object at all and where is it concentrated?) 

Evidently, when approaching the gravitating centre down to r ≈ GM/c2 one must take into account 

that the total energy (Mc2) of the system 'matter + gravitational field' consists of field energy in 

vacuum and energy inside the sphere filled by matter (particles). Here a simple 'point' notion of the 

central gravitating object ceases to be applicable and one must already account for a kind of 'a 

splitting' of sources in equations (24). 

First let us consider a static centrally symmetric field Ψ(r). Scalar source (25) in equation (23) 

remains always the same (i.e., does not 'split') when approaching the centre from r >> GM/c2 down 

to r ≈ GM/c2. At least the gravitation alone in vacuum around a source cannot change this source 

because identical equality to zero of the gravitational field EMT trace (θm
m ≡ 0 for massless field). 

Hence, it follows that equation (23) is linear down to the limit r ≈ GM/c2. It means that both the 

potential Ψ(r) and the force (of repulsion) F(0) and the energy density θ00
(0)(r) are found exactly for all 

r down to r ≈ GM/c2. 

Let us now consider a static, centrally symmetric tensor field Φik(r). When moving from regions 

with r >> GM/c2 closer and closer toward a central object with r ≈ GM/c2, a simple point 

approximation for purely tensor source Tik
(2) (27) must be satisfied from bad to worse (the source is 

splitted, i.e., one may not already use the same M in (27), the mass of the central 'point' as if 

reduced when approaching r ≈ GM/c2). When approaching the centre, the traceless tensor θik (46) or 

the energy-tension of gravitational field itself continuously distributed in vacuum around a central 

source (body) must play an ever increasing role in vacuum as an additional source. Hence, 

equations (24) for purely tensor field Φik(r) become nonlinear, which is different from linear 

equation (23) for the scalar component Ψ(r). 

If we use the results of this section one can calculate the EMT for field (29) in some point r for 

some given direction of Cartesian axes X, Y, Z: 
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0
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0
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, 

where α, β = 1, 2, 3; δαβ = 0 (α  ≠ β), δαβ = 1 (α = β). But since the choice of Cartesian axes direction 
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in the same frame of reference for every point r is essentially arbitrary because of central symmetry 

of the problem under consideration, then an averaging over all equiprobable (having equal 

probability) directions of axes X, Y, Z, drawn from the centre, gives x x  = 0, if α  ≠ β and 
2

x = 

r2/3. 

Thus, the energy-tension of gravitational field of the centrally-symmetric problem in every point 

located at a distance r from the origin of coordinates is given independently of axes direction by the 

tensor 

θik = θ00 diag(1, 1/3, 1/3, 1/3),   θm
m ≡ 0 .                                                      (48) 

In such a form the gravitational field EMT around a gravitating centre corresponds to some 

medium as if consisting of a relativistic gas (of virtual gravitons). 

Since here the question is all over on field in vacuum around a sphere of r ≈ GM/c2, then we 

exclude for the present this small region δr ~ GM/c2 in the centre. Then the equations for the 

potential Φik(r) in vacuum will be 

 
2

2 2

1 [ ( )]
2ik ik

d fr r
r dr ac

     .                                                                  (49) 

Consequently, for 00-component of this equation we have 

2 2

002 2 4

1 [ ( )] 0d f Cr r
r dr c r

    ,                                                                  (49)' 

outside the sphere δr ~ GM/c2. A sum of the integral of this equation without the right side plus a 

solution of equation (49) with the right side will be a centrally symmetric, time-independent 

solution of this equation. Then we have 
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2

CGM cr
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      . 

  Evidently, at r >> GM/c2 the obtained potential must pass into potential (28), which defines    

(together with the Ψ(r)) the density θ00 in (49)'. On the other hand, we require, as before, the 

satisfaction of the old condition about the potential to be zero at r → ∞. As a result, for the constants 

a and b we have a ≡ 0, b ≡ C3/2, and for the corrected potential Φik(r) we obtain ultimately                                           

                                               
2

00
3 1 1 /( ) 1
2 16 3

( )fM GM cr
a r r

   ;                                             (28)' 

Φik(r) = Φ00(r) diag(1, 1/3, 1/3, 1/3) . 



 25 

Here we can return to the unique tensor field with the following non-zero components 

2 2

00
1 / (1 / / 2 )( ) 1
2

)(C GM c GM GM c rr
r r fr


     ; 

2

11 22 33
1 /(1 )
6

C GM c
r r

         .                                       (29)' 

At calculation of a corresponding contribution δφ2 into the perihelion shift only the correction for 

Φ00-component of the potential Ψik gives ultimately an essential addition to the classical Lagrange's 

function. Other small corrections (to Ψ11, Ψ22, Ψ33) give an addition to the Lagrange's function 

proportional to v2/c2, which leads to a negligible contribution into the effect. Thus, a nonlinear 

contribution to the Mercury perihelion shift turns out to be equal to 

2
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/
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GM c
e a








  ,                                                         (50) 

which in sum with the linear effect of gravitational interaction lag (38) gives the well-known GR 
result 

2

1 2 2

6 /
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GM c
e a


    


  . 

(In this formulas for the perihelion shift a is the semi-major axis of the orbit and e its 
eccentricity, as was in (38).) 
     The sign of the nonlinear perihelion shift δφ2 is evidently connected directly with the sign of the 

gravitational field energy θ00, as was seen from the foregoing. And the nonlinear contribution into 

the effect of Mercury perihelion shift is completely connected only with the corrections to the 

tensor component of gravitation. 

6. Nonlinear Gravidynamics and the Theorem on the Collapsar Static Field 

Within the bounds of the linear GD one can also predict new (respective to GR) effects in the weak 

field of the Earth. The description of such effects in the experiment with a gyroscope on orbit of 

the Earth, which could differ dynamic interpretation of gravitation (GD) from the geometrical one 

(GR), is accounted in the paper by Baryshev and Sokolov (1983). 

But the most essential difference from GR mentioned above can be the existence in GD of the so-

called scalar component of gravitation. In particular, the possibility of scalar radiation or 

longitudinal gravitational waves emerging, for example, at spherically-symmetric pulsations and 

spherically-symmetric collapse of a gravity field source, follows equation (20*) in the system (20*, 

21*). The possibility in principle of such a radiation in GD allows approaching absolutely 
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otherwise (than in GR it was) to description of the very process of a relativistic, spherically-

symmetric gravitational collapse. Such a collapse should be understood in GD as a process 

(catastrophic may be) of the system 'particles + field' transition into a more and more bound state at 

which the system loses a part of its energy - rest mass - in the form of longitudinal (scalar) 

gravitational waves. 

At the collapse of spherically-symmetrical distributed matter (or a particles system) and at for-

mation of a maximum bound body with the dimension of order of the gravitational radius (GM/c2), 

the particle rest mass and the rest mass of a collapsing object on the whole can really change. As a 

matter of fact this is just the statement of the paper by Baryshev and Sokolov (1984). The decrease 

of the rest mass of a gravitating body in GD follows just the conservation of energy at such a 

spherically-symmetric collapse, since now (unlike GR) 'an evacuation' of energy is permissible in 

principle in the form of scalar longitudinal waves. Thus, the possibility in principle of the change of 

the rest mass of gravitationally interacting bodies kx



 (μ dxk/dt),k ≠ 0 can be a basic feature of the 

nonlinear GD, distinguishing it from the linear approximation, where the law of mass conservation 

(5) was fulfilled and gravitating 'points' were assumed to be really point structureless objects. 

The description of the collapse nonstationary process itself as the transition of the system in a 

bound state is however a nontrivial problem. In the total extent this problem requires calculating 

effects of the falling matter brake by radiation arising at the collapse. In accordance with the 

foregoing, the particle rest mass in equation (33) cannot already remain constant when falling to the 

centre, i.e., in general case in GD we deal with the motion of particles with the changing mass in 

principle. 

Here, using the previous we investigate the posing of problem about results of such a collapse. 

First, one can attempt to study stationary stable states of the system 'particles + gravitational field' 

in the moments when the system does not radiate. Analogously to that, as in quantum mechanics of 

atom, the system is considered in stationary states or between transitions from one given energy 

level into another one.  

Correspondingly, the collapsar is understood here as some stationary stable state when the 

following is given: 1) the total energy, 2) the dimension of a region filled by matter, 3) the total 

matter mass in this region, 4) the energy density of field in vacuum and its 'mass'. 

The circumstance which was already mentioned in the previous section and which is to be begun 

with (in our opinion) is the fact that the scalar potential, i.e., the potential of repulsion found in the 

linear approximation of GD for the field in vacuum around a point with the mass M, does not 

change, the most probably, in the nonlinear approximation also down to r ≈ GM/c2. It follows the 
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general requirement, which will remain valid for GD also, namely that the EMT trace T of the 

system of interacting particles comes to the EMT trace of particles only (Landau and Lifshitz, 

1973). Such a requirement is satisfied indeed precisely for the gravitational field itself and for 

electromagnetic classical ('massless') fields also. 

In any case we use the noted circumstance and in the following we shall proceed as far as 

possible from the requirement: for spherically-symmetric gravitational field in vacuum to be static 

down to a distance of order of GM/c2 from the centre it is necessary that two conditions for the 

EMT trace of the system 'particles + field' should be satisfied. On the one hand (the 'external' 

integral),  

               
0 0

2 2d ( )d
V V

T V Mc V Mc   r  ,                                                            (51a) 

where  

                                            V0 > (GM/c2)3 4/3 π ≈ 4/3 π rx 3  . 

And on the other hand (the 'internal' integral), 

 

                                         
2

0

/
2 2 2 2 2

0

4 * 1 v /
xr GM c

V
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     .                                 (51b)  

From the spherical symmetry it follows that the functions μ* and v2 depend on r only. 

The discrete description accepted in GD holds that the density of point particles with rest masses 

ma* bound in a sphere of radius rx can be represented in the form μ* = Σα ma* δ(r - ra). Then 

conditions (51a,b) must be understood in the following way: a 'point' source of scalar field located 

in the origin of coordinates (i.e., somewhere in the centre of a large sphere of volume V0 (51a)) is 

determined in point of fact by the trace of the interacting point particles EMT located in the small 

sphere of radius of order of GM/c2 (in the 'internal' integral 51b). 

In a sense here we answered the question what is this collapsar mass. In point of fact, conditions 

(51a,b) can serve as a definition of the rest mass of supposed spherically symmetric compact 

configuration with the dimension of the region filled by matter of order of gravitational radius. 

However, here the parameter Mc2 describes here the system 'matter + field' on the whole, defining 

by the conditions (51a,b) the static character of the outer gravitational field of the configuration.  

The mass of the compact object in the centre (the collapsar itself) will be discussed more below. 

One can suppose that conditions (51a,b) will be broken in some way at the decreasing of the  

dimension of the sphere filled by matter down to r ≈ 0, without excluding in principle its quantum 

dimension. But we shall do our best below to adhere consistently to the idea that one can always 
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speak about interacting point particles inside the sphere rx ≈ GM/c2. We shall always assume that 

inside the sphere of r = rx there are particles with the rest masses ma* ≠ 0, interacting by means of 

some massless fields, or inside the sphere r = rx there is the matter with characteristic equations of 

state with the rigidity less than p = ε/3 (cf. Landau and Lifshitz, 1973). Ultimately, the question(s) 

formulated in Introduction comes to the question of what limits the conditions (51a,b) could be 

assumed consistent with the requirement that the spherically symmetric field in vacuum should 

remain static. 

Now everything is ready for a rigorous proof of the article basic statement, i.e., of the theorem on 

the collapsar static field. But before going directly to the formulation of this statement I note here 

that I shall not touch upon uncertainties connected with the notion of an interacting point of the 

quantum theory of field. That is why the characteristic dimension under consideration GM/c2 is 

assumed to be quite macroscopic non-quantum dimension for a while. Accordingly, for M values 

everywhere, far and wide I mean masses of the order of stellar one and more, up to cosmological 

masses. 

Besides, one must always keep in mind that within the bounds of GD we deal in result with an 

idealized situation. Surely, real 'points' interact not only gravitationally. In particular, at a small 

distance between these points non-gravitational forces can arise which one could neglect at the 

distances >> Gma/c2. It can be especially important at small GM/c2 ~/>1 km.  The properties of the 

points at the distances of the order of Gma/c2 apart can completely change if to recall that the rest 

mass can change (ma ≠ ma*) at the 'strong' gravitational interaction or at the compression of the 

system down to the r~ GM/c2. 

Thus, we chose conditions (51a,b) as the basic conditions determining the static character of field 

in vacuum. It means that scalar source (25) in the right-hand side of equation (23) remains always 

the same when approaching the centre from r >> GM/c2 down to r ≈ GM/c2. Now it turns out that to 

answer the question on the static field of the collapsar - a compact configuration (see the 

Introduction) - one does not need at all to solve equations (49) in all their approximations. For it is 

sufficient to know that the potential Ψ(r) and the energy density θ00
(0)(r) are found already exactly 

down to rx ≈ GM/c2. 

Let (just for a while) dimensions of the region filled up by point particles to be unlimited from 

below and let for the present the energy, distributed in space out of the region, to be only the 

positive energy of gravitational field in vacuum - i.e., 

θ00 = θ(0)
00 + θ(2)

00 ≥ 0 ,     θ(2)
00 ≥ 0  .                                                   (52) 

How close can one approach the centre for the gravitational field in vacuum to remain static? For 

static scalar field in vacuum we have (in all approximations) the 'scalar' energy density equal to 
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Consequently, one may write directly the integral  
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It is evident that this integral must also account for the energy density of the gravitational field 

tensor component θ(2)
00 which in all next approximations at r → GM/c2 can differ, generally 

speaking, in some way from (47). And above all, this energy must be positive (non-negative) right 

along.  So then the integral for the sum 
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is equal to the same value Mc2 at some rx which is anyway greater than¼ GM/c2.   

   Out of dependence upon the concrete form of θ(2)
00 ≥ 0, if the energy of both gravitational field 

and each of its components separately is positive, then before the sphere r =¼ GM/c2 will be 

reached (from infinity to ¼ GM/c2), the total energy Mc2 of the whole configuration must already be 

the energy of gravitational field solely in vacuum (θm
m ≡ 0). It means that even over the sphere r = 

¼ GM/c2 the scalar source (the EMT trace of the whole system) must already go to zero: 

2 2 2* 1 v / 0T c c    

(i.e., T=0 everywhere if θm
m ≡ 0). But then either velocities of all particles must become equal to the 

velocity of light, or the rest masses in μ* must become zero, which is all the same. In other words, 

then the equations of field can be only wave equations all over the place. And the scalar source 

vanishes everywhere. Consequently, in that case one may not speak about any static field at all. (Of 

course, then there is no any newtonian limit for the gravitational field.) 

Now one may say that if stable configurations with the static field outside the region filled up by 

particles are possible, then the dimensions of the region are anyway greater than  2 ∙ ¼ GM/c2. And 

consequently, the stationary object in the centre generating the static field may occupy only a finite 

volume - the sphere of a diameter greater than ½ GM/c2. Hence, the impossibility follows of an 

infinite mean density inside this sphere, also as in principle a possibility is excluded exactly of 

approach (the compression) to the centre of the gravitating object down to r = 0. 

Thus it was shown that from the fact of the positive gravitational field energy (θ00 ≥ 0) and its 

'masslessness' (θm
m ≡ 0) it follows that it is impossible to compress particles (matter) into the sphere 
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of the volume less than 4/3 π(¼ GM/c2)3 having spherically-symmetric static field in vacuum (the 

tensor source trace T in (20*) not to be equal to zero). Conditions (51a,b) can be assumed consistent 

with the static character of the spherically symmetric field in vacuum, if an upper limit in integral 

(51b) is anyhow greater than ¼ GM/c2. 

It is natural that the energy solely of static gravitational field generated by a central object in 

vacuum can anyhow only be less than the total energy Mc2 of the whole spherically symmetric 

configuration: 

(0) (2) 2 2
00 004 ( )

xr

r dr Mc  


      (in vacuum, for rx > ¼ GM/c2)   .                    (54) 

This inequality can only be strict. Correspondingly, the compact object in the centre (somewhere 

inside the sphere of the radius r~ GM/c2) must have a finite 'rest mass' M*. And the rest mass M* of 

the object near the centre (the collapsar proper) cannot be equal to M and must be less than M. It is 

possible that some part of the configuration total energy (mass) must be purely gravitational. 

Now one can write the statement (the theorem) expressed above about the collapsar static 

spherically-symmetric field in the form of the integral condition 
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     , rx > ¼ GM/c2   ,                           (55) 

where θ00
(2) ≥ 0, θ00

* ≥ 0· Here we allow a possible contribution of the positive energy of some non-

gravitational (but massless) field θ00
*. At fulfillment of condition (51a,b), condition (55) completely 

solves the singularity problem in GD. 

7. Conclusions 

The previous has shown that in GD collapsar properties must differ from the properties of 'black 

holes' (BH) in GR. Though it should be said that the situation with the collapsar in GD somewhat 

resembles the situation with BH in GR. 

In a sense, the field of GR may not be assumed static near the Schwarzschild radius. It becomes 

particularly clear when it is necessary 'to sew' together outside and inside solutions for the field... In 

GR they say about a 'solidifying', infinitely lasting collapse in the frame of reference of a remote 

observer. In this frame of reference the field in vacuum (Schwarzschild field) is nevertheless 

assumed to be static. The 'remote observer' frame of reference in GR coincides in point of fact with 

one determined in Section 4, in which the gravitating body is at rest in the origin of coordinates. 

But, it is in this frame of reference that we have shown absence of any singularity in GD within the 
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bounds of the dynamic interpretation of 'old' equations (14). 

The general statement expressed in the paper on the spherically symmetric static field following 

the axioms lying at the base of the relativistic field theory must greatly help concretization of the 

collapsar (the compact and stationary, bound object) properties in GD. In particular, it is possible 

that the collapsar has nevertheless a surface and its properties do not coincide completely with 

properties of BH described by the known Schwarzschild-Tolmen solution. In this connection it 

might be more correct to say not 'BH' meaning the solidifying collapse, but more carefully to call 

the corresponding state 'collapsar' and to call basic parameter determining such an object not 

Schwarzschild radius, but according to its energetic definition in the GD to call the value GM/c2 a 

gravitational radius. 
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