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Abstract.  Within the scope of a theoretical scheme treating gravitational interaction consistently as a dynamical (gauge) 

field in flat space-time, an expression was obtained for the density of gravitational field energy-momentum-tensions in 

vacuum around a collapsed object (collapsar). The case was studied of an interacting static spherically-symmetric field 

of the collapsar in vacuum with taking into account all possible components (spin states of virtual gravitons) 

contributions into energy for the symmetric second rank tensor ψik. The radius of a sphere filled by matter for the 

collapsar with mass M can reach values up to GM/c2. 

1. Introduction 

This paper continues the paper (Sokolov, 1992) which began the study of physical properties of 

objects with extremely strong gravitational fields on their surfaces, i.e., on collapsars from the 

standpoint of the consistent dynamical description of gravitational interaction. The main purpose of 

the paper is the solution of the problem in energy-momentum-tensions of the collapsar field when 

this gravitational field is strong. 

In what follows, the question is basically on strong fields of objects with masses of the order of 

several solar masses - i.e., on the collapsars with stellar masses. Macroscopic average densities of 

such objects are at least nuclear ones and achieve supernuclear density. Correspondingly, 

gravitational field energy densities on such collapsar surface may become equal or even more than 

ρnucl ∙ c2. If we take as an example such object as a neutron star with the mass M = 1.44 Μʘ and with 

the radius 10 km and evaluate the gravitational field energy density on the neutron star surface by the 

formula ( φN)2/8πG, then the energy connected with the field alone turns out to be enormous and 

approximates to the rest energy of the neutron star matter itself. 

Can the field energy density greater than or of the order of ρnucl ∙ c2 be non-localizable? In the 

context of a purely geometrical interpretation of gravitation field the answer to this question is 
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known for a long time: the field energy is nonlocalizable even in such a case. The consistent 

dynamical formulation of the gravitational interaction theory proceeds as a matter of fact from the 

notion that every cubic centimeter of space contains a completely determined quantity of  

gravitational field energy-momentum-tensions. Of course, the final answer in this debate will be 

obtained as a result of a space regions observation with the strong field. Just in the context of 

possible new observational consequences I continue to formulate here the collapsar problem in  

gravidynamics. 

In particular, as was noted in the previous paper (Sokolov, 1992), the collapsars can have surfaces 

always. But for a rigorous proof of that, one must first of all clear up completely the question on the 

gravitational field energy-momentum-tensor (EMT). 

In connection with the foregoing I shall emphasize through all the paper the characteristic features 

of formulation of the collapsar field problem in direct connection with the field energy problem. For 

all this I consistently adhere to the theoretical scheme in which the gravitational interaction, equally 

with other ones, is considered as a dynamic field plunged into flat space-time. I note here once more 

that in such a case one may accept at once that energy is localizable, positive and is understood in 

the same sense as in any other field theory, in particular, in the classical electrodynamics. I am not 

going to prove here especially the justice of such natural demands (axioms) in the dynamical field 

theory. It is more interesting to elucidate what observational consequences their fulfilment brings to, 

if the axioms are really true.  

We begin here (in the Introduction) with the most important, principle aspects underlying the 

approach developed by us (Sokolov, 1992; Sokolov and Baryshev, 1980; Baryshev and Sokolov, 

1984) to the description of gravitational interaction. The term 'gravidynamics' (GD) used below (and 

also frequently used by specialists in gravitation) seems to me the best one reflecting the features of 

our approach. 

As was shown in detail in the previous paper (Sokolov, 1992), the field energy density near a 

gravitating body with the mass M at the distance r from its centre, can be given as a matter of fact by 

θ00 = ( φN)2/8πG,    where   φN = –GM/r , 

if at its deduction one take into account the fulfillment of three main conditions for the field EMT: 

θ00  0 ,    θik = θki ,   θikηik = 0 ,    i,k = 0,1,2,3. 

Where ηik = diag(+1,  –1 ,  –1 ,  –1 )  is Minkowsky's metric tensor. I emphasize at once that in GD 

you may use only this always the same constant metric at the consistent dynamic description of  

gravitational interaction you may do that in the case of all other interactions. 

To understand correctly following sections one should not forget and consistently adhere to the 

concept (which became already a common place) that, in the relativistic field theory, one may not 

ascribe straight away some finite dimension both to test particles and to particles ('matter') - sources 
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of the field. I.e., at the formulation of a gravitational interaction relativistic theory (like for all 

modern field theories) it is more logical at least at the beginning to proceed from the fact that the 

right-hand sides of corresponding field equations can contain a point source or a system (∑a ma ) of 

point sources: i.e., a gravitating 'body'. In particular, every macroscopic region, which the real 

gravitating body is formed of, can be presented as a 'point' with the mass ma. These regions are the 

'points' between which mainly only gravitation acts. In GD the fundamental Special Relativity 

concept about interacting points (usual for local theory) is used as an initial concept of 'gravitational 

charges'. Of course, a question arises on the justice of these idealized notions for the macroscopic 

theory which the gravitation theory is. As we will see from the following, an exhaustive answer to 

such a question can be obtained ultimately as a full solution of the problem of physical properties of 

GD collapsars. 

As it was in the paper by Sokolov (1992), one can begin again to investigate first of all what is a 

unit 'elementary' point source with the mass M. In a sense, the collapsar itself is such an 'elementary' 

object by analogy with the elementary point charge - electron - in electrodynamics (ED). In GD 

around any spherically-symmetric distributed mass there is also the field with the energy density θ00 

- 'a coat' of virtual gravitons. At some distance from the centre of the object in 'vacuum' (i.e., out of 

the sphere filled by matter) θ00 can turn out to become of the order of the average rest energy density 

of the collapsar - i.e., of the system 'matter + field' 

θ00 = GM2/8πr4   Mc2/r3 . 

Thus, in GD which is a macroscopic theory a question arises, which we meet one way or another in 

the classical ED, quantum ED (QED), quantum chromodynamics (QCD), etc.: where in this case and 

in what form is the mass of such a 'point' object concentrated? What is the collapsar rest mass in 

general in GD? 

Such problems inevitably arise in GD also when the distance from the collapsar centre become of 

order of the gravitational radius GM/c2 of this 'point' object. Here it turns out that the quantity GM/c2 

is a direct analogue of the classical electron radius. Just as in the classical ED, one can show that 

until the point distribution (∑a ma ) compressed to a dimension when distances between the points 

become of the order of Gma/c2, we deal with a theory quite analogous to the classical (and linear) 

ED. 

From the foregoing it is clear that in GD the 'point' source with the mass M is in fact 'something' 

having a finite dimension greater-than or ~ GM/c2. At r >> GM/c2 one can be uninterested at all in 

the structure of such an 'elementary' point object. But then the mass of the 'coat' of the virtual 

gravitons must be automatically included in the source mass. Thus, that part of the theory, in which 

the notion of the point gravitating object with the mass M is true, can be described by linear 

equations. 
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I.e., in this linear approximation GD when gravitating sources may be quite assumed to be point 

structureless objects for which the mass conservation is still fulfilled to a high precision as 

,

0
k

k

dx
dt


 

 
 

,   where  
a

  maδ(r – ra), 

one can, by using usual rules, put down the Lagrangian of a symmetric tensor field ψik interacting 

with its sources. I emphasize that the consistent dynamic interpretation of the field equations fitting 

to this Lagrangian rely on fact that potentials of the field ψik (just as in ED) should be understood 

absolutely independently of the chosen metrics ηik. In particular, in GD it is senseless to speak about 

the condition ψik << ηik. Like the vector 4-potential in ED, ψik can be of any value in virtue of 

indeterminancy of 

ψik → ψik + Ai,k + Ak,i + Λ,ik 

This transformation for ψik is the gauge one with an arbitrary 4-vector Ai and arbitrary 4-scalar Λ. It 

can be connected as usual with the masslessness of the tensor field ψik. Ultimately it is not the 

Lorentz invariance demand alone but the demand of the gauge invariance in the linear approximation 

of GD also which determines both the field Lagrangian and the field equations in a unique fashion. 

In the linear approximation the interaction of the field ψik with its sources is described by the term 

fψikTik of the Lagrangian (f is the coupling constant). If adhering consistently to the structurelessness 

(or the pointness) of particles with the rest mass ma ≠ 0 interacting with gravitation, then to describe 

the substance which is usually called the 'matter' we must choose as the point of departure the tensor 

(EMT) of the system of structureless point objects-particles: 

Tik = μcuiuk(ds/dt),    where  ds = c dt 2 21 v / c  

where ui is the velocity 4-vector and v is the usual velocity of particles. In the linear approximation of 

GD, for one ('elementary') motionless point particle with mass M in the origin of coordinates (ra ≡ 

rΜ = 0 and v = 0) this tensor has the simple form 

Tik = Mc2δ(r) diag(1,0,0,0). 

For that massive gravitating centre it fixes the reference frame in which we may investigate the field 

of such a source. 

In the same linear approximation if we base on the interaction f ψik Tik = fμc(ds/dt) uiukψik which 

one can write down in the symbol form 
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                                      . 

Consistently adhering to the dynamical interpretation of the field ψik, we can obtain also the 

equations of motion for particles in a given field ψik just as it is done for an electron moving in a 

given electromagnetic field (cf. Landau and Lifshitz, 1973). 

One can understand as the universality of gravitational interaction in GD the fact that f is identical 

for all fields. In accordance with that, the interaction of electromagnetic field with the gravitational 

field ψik must be written in the form 

       . 

Ultimately it gives the correct description of interaction effects between light and given gravitational 

field (such as light deflection and radio signals lag in the field of the Sun). But for the correct 

description of the redshift effect one must add the interaction f ψik θ(e)
ik with the spinor (e-e+) field 

constructed by the same rule, i.e., with the same  f  to the interaction f ψik t(el)
ik (Mosinsky, 1950). 

In the theoretical scheme based on a consistent dynamical description of gravitational interaction, 

the introduction of nonlinearities turns out to be directly connected with the field energy problem. 

The unviersality of gravitational interaction leads to the fact that any field (including the gravitational 

one) interacts with any gravitational field the stronger the higher is its energy. It is evident that the 

nonlinear GD is the interaction when the distance between point particles with mass ma becomes of 

the order of Gma/c2. For the collapsar it means that the distance from its centre can reach the value of 

the order of GM/c2. I.e., for the field in vacuum the condition θ00 ~ Mc2/r3 is already satisfied. In 

accordance with the universality of the gravitational interaction one can assume the field itself to be 

the source of gravitation (that lacks in ED). It means that in Lagrangian, besides the term f ψik Tik, 

terms arise of the type 

  . 

Here it is seen especially well that the gravitation field energy localizability, as well as the 'pointness' 

of the particles interacting with the field, can be connected simply with the demand of locality of 
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gravitational interaction. (Such a method of introduction of nonlinearities in GD is analogous in a 

sense to the transition from the tree approximation to the one-loop approximation in QED.) 

Accordingly, in the right-hand side of the field equations it leads to the including of the gravitational 

field EMT θik into the sources also. Then near the collapsar gravitational radius a kind of 'splitting' of 

the point source Tik = Mc2δ(r)∙diag(l, 0, 0, 0) occurs. I.e., in such a case we can say that the 

degeneration by M is as if it was taken away. A part of the collapsar mass can be now a field mass. It 

is natural that the accounting of the θik in vacuum around the region filled by matter influences also 

the form of the 4-potential ψik of the collapsar field. That leads in particular to a complete explication 

of observational effects of minor planets perihelions shift, the shift of periastron in a binary system 

with the radio pulsar PSR 1913 + 16, etc. 

The choice of the EMT θik of the collapsar strong field is a part of the solution of the collapsar 

problem in GD. I want to emphasize here that I do not try to describe at once the nonstationary 

process of collapse as the passage of the system into a bound state, i.e., into the collapsar. It is more 

simply to state first the problem of probability itself of steady stationary states of the system 

'particles + gravitational field' = the system with the given rest energy Mc2. I.e., the question may be 

on a possibility (depending on the nearness of an object to its gravitational radius) to speak about 

such a system as about a 'point' with a definite rest mass M and with the Newton gravitational field 

(in virtue of the accordance principle) φΝ = - GM/r at r >> GM/c2. 

Thus we can assume that the problems of the collapsar (but not collapse) in the GD may be: the 

problem of probability of existence of a stationary steady state with a given total energy (Mc2), the 

problem of the region dimension (a 'bag' filled by particles-matter) ~ GM/c2, the problem of the total 

mass of the 'bag' and the particles density in it, the problem of the field energy density in vacuum 

around the 'bag' and the total 'mass' contained in the field surrounding the 'bag'. 

After this section's remarks we can pass to the substantiation of the choice of the collapsar field 

EMT. But before, it is necessary at first to elucidate the physical sense of Hilbert-Lorentz gauge 

condition for the 4-potentials ψik in connection with particularities of the interacting gravitational 

field in vacuum near the 'bag' surface (Sokolov, 1992; hereafter referred to as [PI]). 

2. The Components of Vector and Tensor Massless Fields and Gauge Conditions 

Certainly, the main purpose of this section is a refinement of the gauge condition sense for the case of 

the symmetric tensor field ψik describing gravitational interaction. But first I shall try to introduce 

well-known examples from ED whose ideas underline all modern interaction theories. 

2.1. VECTOR FIELD 

In ED the field Lagrangian is constructed usually from three invariants: 
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I1 = Ai,kAi,k ,         I2 = Ai,kAk,i  ,        I3 = Ai
,iAk

,k . 

Since the two last ones differ from each other only by divergence then ultimately for the vector field 

Ai, interacting with its sources, the Lagrangian consistent only with the condition of relativistic 

invariance will be in the most general form: i.e., 

Lel = ½ (Ai,k Ai,k – dAk
,k Ai

,i) + jk Ak    .                                                        (1) 

Where d is an arbitrary (auxiliary) constant for the present. Corresponding field equations will be 

                                        Ak + dAi
,i

k = – jk ,                                                                                    (2) 

                                         
2 2

2 2

1
i

ix x c t
 

    
  

  

In such a theory there is a 'superfluous' scalar: i.e., the vector Ai is a part of field equations (2) both 

directly (Ak) and in the form of a scalar – the 4-divergence Ai
,i (dAi

,i
k ). Corresponding to that, they 

say that the vector field can also describe simultaneously the scalar field - the scalar component of 

the field. But if equations (2) describe the electromagnetic field then the experiment demands the use 

of the a conserved electromagnetic current in (2): i.e., 

                       jk
,k = 0 ,                                                                                      (3) 

Thus, the scalar component is absent in the very source jk of the field Ak. 

In the special case, when d = 1, the whole theory becomes also a gauge invariant one: namely  

                               Ai → Ai +Λ,i    ,                                                                              (4) 

where Λ is an arbitrary 4-scalar. This case (d = 1) combines naturally the absence of the scalar source 

(3) and the absence of the scalar component (Ak
,k) in the field Ai . The point is that in the gauge 

invariant theory the very absence of the scalar (3) at d = 1 becomes a compulsory (obligatory) 

condition for the vector source ji. Such a condition follows the so-called strong law - Noether identity 

(see, for example, the book by Konoplyeva and Popov (1973) on the second Noether theorem). The 

strong conservation law ( jk
,k = 0) is a direct consequence of gauge invariance (4) of the Lagrangian 

(1) at d = 1. Conformably they say sometimes that condition (3) is necessary for the consistency of 

field equations with sources (2) at d = 1. 

In short, the gauge invariance (4) demands the fulfillment of conservation (3). It is well seen in the 

vector field case in question. Firstly, if we take the 4-divergence of the left-hand side of equations (2) 

at d = 1, we obtain the identity (Noether identity) in the form 

Ak
,k + Ai

,ik
k ≡ Ak

,k - Ak
,k ≡ 0 . 

This identity (at d = 1) is fulfilled independently of value of the scalar Ai ,i, and this identity demands 

also the absence of the scalar source ji
,i = 0. (Although in particular, it is permissible, that □Ai

,i ≠ 0.) 

Second, in accordance with the fact that ji
,i = 0, one may use directly (at d = 1) the gauge invariance 

of equations (2) and exclude the superfluous scalar Ai
,i stipulating for it the gauge condition (Lorentz 
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gauge): 

                                                                     Ai
,i ≡ 0  .                                                                           (5) 

If there is no scalar source then it is natural to assume that there is no corresponding field, i.e., the Ai  

field has no scalar component (ji
,i = 0     Ai

,i = 0). 

In the case of the gauge invariance absence (d ≠ 1) the excluding of the 'superfluous' scalar Ai
,i does 

not appear so natural as at d = 1. If we take the divergence of the left-hand side of (2) then it does not 

yield already the identical zero: 

Ak
,k – dAi

,i = (1 – d)Ai
,i  ≠ 0  . 

Now, in general, the scalar source may be nonzero, the field equations themselves do not demand 

directly its absence. 

But if to demand nevertheless once more (usually they refer here to experiment) the fulfilment of 

differential conservation 

                                                      ji
,i = 0    but at  d ≠ 1 ,                                                                    (3')      

then the equality of divergence in the left-hand side of (2) to zero is ensured as a consequence of the 

additional demand (3') (that does not follow the theory directly): 

                                                   (1 – d)Ai
,i = – ji

,i → 0  . 

We can say that the scalar part (as the component Ai) is the solution of the equation with the scalar 

source tending to zero. It is usually said also that scalar photons remain in the theory but they cannot 

be radiated and absorbed. I.e., the equation □Ai
,i = 0 does not mean, generally speaking, that Ai

,i ≡ 0. 

In that case the demand that Ai
,i = 0 for consistency with (3') means the fulfillment of one more 

additional condition lacking in the theory.   

But, on the other hand, ultimately they appeal to the scalar field component Ai requiring the 

additional degrees of freedom for virtual photons. And what if in this case also we try to adhere to the 

idea that the account for additional field component is connected with the violation of differential law 

(3') while rigorously observing the integral charge conservation? 

Then if in the gauge invariant theory (d = 1) the conservation ji
,i = 0 is fulfilled and the field scalar 

component Ai
,i (virtual quanta) can be naturally excluded from the theory, the case d ≠ 1 may be 

considered in a sense as one corresponding to a 'violated' gauge symmetry. In that case it is logical 

to adopt the fact that the differential law ji
,i = 0 is not fulfilled already (for almost real and virtual 

quanta): 

                                                     ji
,i ≠ 0   at    d ≠ 1  .                                                                   (6) 

Ultimately, as we could see, there is no change by such point of view in ED but now the arising of 

scalars in the theory is a more natural alternative. Then the appearance of the scalar is connected 

with its corresponding scalar source. 
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In particular, at the quantization of the electromagnetic field they use, namely, the gauge 

noninvariant form of the Lagrangian at d ≠ 1. Formally it corresponds to the presence of the scalar 

Ai
,i ≠ 0 in the theory, because of the fact that the condition Ai

,i = 0 remains fulfilled only on the 

average. Then as far as we may assume that ji
,i = 0 also only on the average, the corresponding 

scalar quanta cannot exist far out of the region of averaging. Thus, if we assume nevertheless the 

violation of the differential law ji
,i = 0 in the region of averaging, i.e., in a sufficiently small (< 10-10 

cm) space region, then it is in accordance with the absence of gauge invariance in these regions and 

the presence of the scalar Ai
,i is appropriate in them. Indeed, since we may demand the fulfilment of 

the condition Ai
,i = 0 only on the average (Bogolyubov and Shirkov, 1973) - i.e., only for average 

values of 

,
i
iA  = Φ*Ai

,iΦ = 0 , 

then we could not assume that the current conservation is fulfilled also, generally speaking, only on 

the average and in the same permissible states Φ 

,
i
iJ  = Φ*ji

,iΦ = 0  . 

But it can be understood as differentially the charge does not conserve near the electron. 

Because the analogous reasoning will be used below in GD, now we need a more detailed 

explanation though the question is here only on some different point of view to well-known facts.  

At distances less or of the order of ħ/mec (3.6 × 10-11 cm) near the electron the effects of vacuum 

polarization become more and more important in ED; e-e+ pairs arise. For all that, the total charge of 

electron at distances >> ħ/mec is equal to e and is rigorously conserved in accordance with 

experiment. But also in accordance with experiment this charge is not conserved (differentially) in 

regions of dimensions < ħ/mec.  Usually it means an increase of electromagnetic coupling constant α 

= e2/4πħc at small distances from electron. Such interpretation of e-e+ pairs influence allows 

thinking that it is here, where the scalar source differs from zero ji
,i ≠ 0, the scalar field-scalar 

photons (virtual photons) must arise. 

Thus, generally speaking, the vector field Ai corresponds to particles with two spins: 0 and 1,  

                     [ Ai ] = 0   1 .                                                (7) 

Accordingly, the current ji can in the general case be a source of particles of two spins: 

                     [  ji  ] = 0   1 .                                              (8) 

For all this, the scalar parts Ai
,i and ji

,i correspond to particles with spin 0. Usually their exclusion in 

the gauge invariant (d = 1) limit with the use of corresponding gauge condition Ai
,i = 0 and at 

conservation of current ji
,i = 0 remains in the theory only photons with spin 1 – the 'purely' vector for 

real photons. But as we have just seen, near an electron the photons may have any possible spins (0 
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  1) which the vector Ai contains. (For example, at count of the scattering amplitude one must take 

into account four possible states of polarization for this set of spins.) As we show in the following 

section, the analogous situation arises also in GD for field near the surface of the 'bag', i.e., in the 

strong gravitational field of the collapsar. But here (in the macroscopic theory) the processes of field 

self-action play the role of quantum processes of pair production. 

2.2. SYMMETRIC TENSOR FIELD 

Let us pass now to a more complicated case of the symmetric tensor field ψik. Here also one can 

construct in the general case the Lagrangian (following only relativistic invariance for the present) of 

five quadratic invariants, formed from derivatives of ψik: 

I1 = ψik,l ψik,l  ,  I2 = ψik,l ψil,k ,   I3 = ψ,k ψ,k  , 

I4 = ψ ,l ψkl
,k  ,       I5 = ψil

,i ψk
l,k . 

As far as I2 and I5 are dependent, the requirement of only Lorentz invariance leads to the Lagrangian 

of the interacting field ψik in the form 

                                                    
4

2
1

ik
A A ik

A

fC I T
c




 ,                                                                         (9) 

with four arbitrary coefficients CA, instead of one, whith was in the case of vector field. 

If to proceed at once, as for the main case, from a self-consistent, gauge-invariant scheme, which is 

fulfilled in the case of the linear GD [P1], then these four coefficient C1, C2, C3, and C4 are defined 

straight away as we require invariance of the field Lagrangian and field equations with respect to the 

gauge transformation of type (4):  

                                                Ai → Ai + Λ,i   ψik → ψik + Λ,ik  ,                                                   (10')                  

with an arbitrary 4-scalar Λ. But in that case the symmetric tensor field ψik = ψki allows more general 

gauge transformation with an arbitrary vector field Ai in the form 

                                             ψik → ψik + Ai,k + Ak,i + Λ,ik  .                                                              (10) 

Corresponding relativistic and gauge invariant field equations will be ('long equations') 

                         ψik + ψkm
 ,m

i + ψim
 ,m

k – ψ,ik – ηik(ψmn
 ,mn – ψ,n

n) = 22 ik
f T

ac
   .                              (11) 

Notations are here identical to those in [P1] and Tik denotes as usual the energy-momentum-tensor 

(EMT) of point particles. 

Equations (11) lead automatically to a requirement of the strong conservation law   

                                                   T ik
,k = 0 ,                                                                                         (12) 
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that must, as in ED, correspond in certain situations to the absence of a vector source now already. It 

is natural (just as in ED for d = 1) to assume that if there is no vector source Tik
,k, then by the direct 

use of (10) one may also exclude, in particular, the vector field corresponding to this source and 

contained in the tensor ψik. 

But here we should understand what the vector field corresponds to the vector Tik
,k? If we took the 

divergence of the left-hand side of equation (11) then it would be identical zero (the Noether identity, 

or the strong law), which is a consequence of the immediate assumption of the gauge invariance. On 

the other hand, I shall be interested here mainly in the 'violations' of gauge symmetry which is 

possible in some situations, for example, in static field of the collapsar, analogously to what was just 

described for the electron case. I.e., I need a nonzero vector Bi (in a generally speaking gauge non-

invariant theory) disappearing at the 'restoration' of gauge symmetry and disappearance of a corre-

sponding vector source. In other words, I need the vector Bi consistent with the an equation of type 

□Bi = –f Tik
,k. 

The point is that the symmetric tensor ψik yields a more wide choice of 'superfluous' field 

components than the vector field Ai. Here it is easy to pick out a scalar ψ ≡ ψm
m, two possible 

vectors ψik
,k and ψ,k and also two scalars ψik

,ik and ψ,k
k. One can separate tensor from scalar by 

invariant manner, using the identity 

ψik ≡ Φik + ¼ ηikψ ,    where  Φi
i ≡ 0 . 

The vector Bi of our interest is a combination of two possible vectors ψik
,k  and ψ,i : 

                                                Bi = ψik
,k + bψ,i = ψik

,k + bηikψ,k   

consistent with an equation of type 

                                                     ( ψik
,k + bηikψ,k ) = –fTik

,k  .                                                        (14') 

In the gauge invariant limit the vector source disappears, Tik
,k = 0 and at this limit the equality Bi = 0 

can be satisfied. I.e., in that case one can immediately use the gauge invariance by a requirement of 

disappearance of the vector Bi, then the correspondent choice b = –1/2 will be determined 

unambiguously.  Here I have only said in other words what is said usually at the Hilbert-Lorentz 

gauge condition choice: i.e., the foregoing means that the gauge is chosen in such a way that if in the 

theory just this vector is absent, 

                                                Bi = ψim
,m – ½ ψ,i = 0   ,                                                                      (13) 

then 'long' equations (11) are transformed to the known form 

                                            2

1( )
2 2

ik ik ikf T
ac

     .                                                                 (14) 
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It points that condition (13) for the vector B' (in gauge invariant limit) keeps the correctness of what 

we had in the case of the 'long' equations: identical zeroing of the left-hand side divergence (the 

Noether identity). Now it is fulfilled also for (14) at Bi = 0. One can say that Hilbert-Lorentz gauge 

(13) just as condition (12) for sources are also the consequence of the strong conservation law in the 

case of the tensor field ψik. But the main thing is here that condition (13) guarantees the excluding of 

the vector field from the theory in the gauge invariant limit and thus the absence of the vector source 

(12) is consistent with the absence of its corresponding vector field 

                                     Bi ≡ ψim
,m – ½ ψ ,i ≡ Φim

,m – ¼ ψ ,i  .                                                              (15) 

Just as in the case of the vector field Ai, the symmetric tensor of the second rank ψik  can be 

decomposed into corresponding spin parts. Ten independent components of ψik can be grouped into 

two fields of zero spin (0 0), one field of spin 1 ( 1) and one of spin 2 ( 2): 

                                      [ ] 0 0 1 2ik       .                                                                                 (16) 

For all that, the spin parts, corresponding to 'superfluous' scalar and vector components of the tensor 

field ψik, could be presented in the form 

                                      [ψ = ψm
m]    0    and    [Bi]   0   1 . 

And in general case, the symmetrical tensor Tik itself is the source of these fields with four spin 

parts also – i.e., ten independent components of Tik  can be grouped into four sources: 

                                      [Tik]   0   0   1   2  .                                                                          (17) 

But in the gauge invariant limit (in the linear GD) the condition Bi = 0 at the conservation of the 

current Tik
,k retains in the theory the gravitons with two spins. Accordingly, for real gravitons 

                                    [ψik]   0   2 ,            [Tik]   0   2  .                                                      (18) 

Where the source of purely scalar gravitons is a nonzero trace of the point particles EMT is  

                                           (T = Tm
m)    (ψ = ψm

m) . 

Thus, one 'superfluous' component (ψ) is, however, possible in the GD (see in detail in [P1]), i.e., in 

GD there is, in principle, a possibility of real zero-spin gravitons or massless scalar bosons emission. 

3. Virtual Vector Field of the Collapsar 

Here as the initial notion of the collapsar (an 'elementary' object in GD) I shall mean the following: 

this is a bound spherically-symmetric object (an analogue of Schwarzschild's black hole) – a 'bag' 

filled as before by point particles with m*
a ≠ 0 and by fields together with the gravitation field 

surrounding this bag on the outside. Inside the bag the field cannot be only a gravitational field, it 
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depends on the particles density in the bag. The condition of spherical symmetry is connected with 

the fact that the 'elementary' object - massive point - yields by definition a spherically-symmetric 

field around it. It is natural to study first the case of such symmetry of the 'elementary' object down to 

its centre. Unlike free (or almost free, as in the linear GD) particles with the rest mass ma we use as in 

[P1] the designation m*
a ≠ ma for particles bound inside the bag. 

The bound particles with masses m*
a ≠ 0 move in this bag in such a way that it is natural to 

imagine the bag itself and the field around as a certain stationary state in which there is a continuous 

exchange between the bag and its surrounding field, plus gravitational field self-action processes. 

The latter are the most essential at small and extremely small dimension of the bag. For all this, if 

energy of the whole configuration (the bag + field = the collapsar) is constant and equal to Mc2, then 

at a constant energy contained in the bag such an exchange leads ultimately to the reaching of the 

steady-state values of energy-momentum-tensions outside the bag also, i.e., in vacuum surrounding 

the bag. 

For macroscopic objects (the collapsars) with mass M of the order of stellar mass or more the 

above-mentioned exchange means the existence of a static spherically-symmetric (at spherically-

symmetric distribution of matter in the bag) gravitational field in vacuum around the bag. As in [P1] 

I shall speak here mainly about this external static vacuum solution of field equations. As to the bag 

itself, it is for the present sufficient to suppose its spherical symmetry of the distribution and the 

motion of point particles with the rest masses m*
a ≠ 0 bound in the bag (the more specification of the 

bag features will be in the next paper). 

   Here the question is mainly on the collapsar gravitational field EMT, i.e., on the choice of an 

expression for the EMT when the field interacts with its sources. Generally speaking, we must now 

keep in mind also the processes of the field self-action which can be pictured as  

 

 

 
for tensor (spin 2) and scalar (spin 0) gravitons separately. Such processes become determining at a 

large density θ00 of gravitational field energy at distances from the collapsar centre of the order of 

GM/c2. In the next section I shall try to elucidate how the field energy is computed near the bag with 

the dimension of order of the collapsar gravitational radius GM/c2. The designations are here mainly 

the same as in [P1] though sometimes some more accurate definitions are needed. 

Since the collapsar field interacts continuously with the bag (and the bag with the field) and self-
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acts near the bag in accordance with (19), it is not surprisingly that EMT of this field is not 

conserved (strictly speaking), i.e., 

                                     θik
,k ≠ 0     .                                                           (20)  

On account of the spherical symmetry and static (stationary) character of the field under 

consideration in vacuum, there remain only three identical nonzero components of the 4-vector 

(20): 

                                          θ00
,0 = 0 ,   θ11

,1 = θ22
,2 = θ33

,3 ≠ 0 ,                                                       (20') 

 (see formula (48) in [P1]). Formally these components can be identified with the presence of a 

pressure gradient for an 'environment' around the bag. (Of course, the equalities (20') is fulfilled 

here only approximately, at the characteristic times  >> GM/c3. This will be said in more detail in 

the next paper.)  

   The nonzero vector θik
,k  must be the source of the corresponding vector field. In general there is 

no innovation in it, we should only take the 4-divergence of both left-hand and right-hand sides of 

vacuum equation (49) in [P1]: 

                                            
2

, ,
2 2

1 [ ( )]
2

k k
ik ik

d fr r
r dr ac

       ,                                                           (21) 

where the equation is written only for the addition δΦik to the potential Φik
(p) of  the 'point' source in 

[P1] for Φik ≡ Φik
(p) + δΦik (see formula (28') in [P1]). Here only the new designation Φik

(p) ≡ Φ(p)
ik  

is introduced here for the 4-potential (28) in [P1]: 

                                           ( ) 3 1 1 1(1, , , )
2 16 3 3 3

p
ik

f M diag
a r

   . 

It is obtained in [P1] without account for θik in the right-hand side of the field equations, i.e., at r 

>> GM/c2. For the structureless 'point' source the Hilbert-Lorentz gauge condition Φ(p)
ik ,k = ¼ ψ,i is 

still satisfied at this approximation. I.e., the relevant vector field is absent, which means that  

                                                 Φ(p)
ik ,k – ¼ ψ ,i = 0 .                                                                        (22) 

Certainly, at more logical reasoning one should keep in mind that equation (21) is a 

consequence of the more general equation 

                                           , (*) ,2

1( ) ( )
2 2

ik ik ik ik
k k

f T
ac

                                                       (23)  

with the nonzero (differentially) right-hand side already. This equation must be written down 

excluding the bag (i.e., the region with Tik
(*) ≠ 0 for bound particles) and taking into account the 
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spherical symmetry 

2

, ,2 2

1 1[ ( ) ]
4 2

ik ik ik
k k

d fr
r dr ac

       . 

Now condition (22) is not satisfied already for the vector field Bi = Φik
,k – ¼ ψ,i. I.e., the Hilbert-

Lorentz gauge condition for the 4-potential Φik = Φ(p)
ik + δΦik (see formula (28') in [P1]) obtained 

with the account of field self-action processes (19) is not satisfied. 

By use of the fact that gauge condition (22) is satisfied for the 'point' potential Φ(p)
ik we shall really 

have for the left-hand side of (21): 

2 2

( ) , ,2 2

1 1 1[ ( ) ] [ ]
4

ik ik ik ik
p k k

d dr r
r dr r dr

          . 

Thus the vector Bi which arises in the nonlinear approximation of GD or at the refusal of the gauge 

invariance is equal to 

                                        Bi = Φik
,k – ¼ ψ ,i = δΦik

,k ≠ 0  ,                                                                (24) 

i.e., this vector is reduced to vector 4-divergence of nonlinear addition δΦik to 'point' potential Φ(p)
ik . 

The vector Bi arises here as a consequence the very gravitational field as the sources, in other words, 

because of the accounting (next approximation in the Lagrangian of interaction (9)) for the process 

of type (19). Of course, for all that the gauge invariance is already violated. 

I want to emphasize once more that there is no absolutely new vector field here. If we assume that 

near the bag (at r ~ GM/c2) the differential conservation is not fulfilled for sources (in this connection 

it is appropriate to recall differential and integral conservation in GR): 

                                Tik
(*),k + θik

,k ≠ 0   at   r   GM/c2   ,                                                                (25) 

then the vector component of the tensor field which was a purely tensor component at r >> GM/c2, is 

sure 'to start operating' (see [P1]). (For all that (20) is a particular case of (25) for vacuum.) This 

vector component was excluded then because of an absence of the appreciable input of the vector 

source at r >> GM/c2. But at r ~ GM/c2 everything that the symmetrical tensor of the second rank 

(16) yields is used. 

Thus from the foregoing the conclusion is that near the bag (at r ~ GM/c2) the tensor component 

Φik of the collapsar field ψik gives raise an additional vector component. For all that we can say that 

an additional degree of freedom is 'unfrozen' - the vector component Φik of the field (and after it the 

scalar Φik
,ik ≠ 0 also). Now we may not say about Φik as about a purely tensor field, we may say about 

tensor field without one scalar. I.e., the field Φik contains at r ~ GM/c2 three spin parts: i.e., 

                                     [Φik] 0 1 2    ,    Φm
m ≡ 0  .                                                                    (26) 
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What occurs with tensor field Φik at r → GM/c2 is natural from the quantum-field point of view. 

The nearer to the bag the more virtual this field becomes. Accordingly (and analogously to what was 

in QED), in that case the components of spin 1 (and 0) must appear, lacking in real gravitons of spin 

2. But at 'unfreezing' of additional components of the field Φik the question arises on correct account 

for contribution of these components into the field energy. 

In case of the purely scalar field ψ = ψm
m there is nothing to 'unfreeze'. There remains also only 

one component even near the bag. For this field (with always well-determined spin) both real and 

virtual gravitons have spin 0. The last is in good agreement with the fact that energy dependence on r 

for the purely scalar field remains invariable up to the distance of the order of ~ GM/c2 from the bag 

centre. (Of course, it is fulfilled till one may speak about gravitation only, see [P1].) For the 

collapsar massless gravitational field the EMT of the ψ-component at any distance from the bag 

centre up to r ≈ GM/c2 is equal [P1] to 

                                     
2

(0) 4

1 1 1 1(1, , , )
16 3 3 3

ik GM diag
r




    .                                                               (27) 

It is this fact which allows me insisting confidently in [PI] on absence of the singularity in GD. In 

what follows, also at computing of the collapsar tensor field energy, I will do my best to use the 

possibility of division of the field ψik into two components Φik and ψ, when the scalar component 

features are clear in many respects. 

4. The Energy-Momentum Tensor of the Interacting Gravitational Field of the Collapsar 

Now I pass directly to the apparently most complicated moment in the whole scheme of GD. I will 

try to understand how the EMT of the tensor component Φik of the field ψik behaves close to the bag 

surface or at distances from its centre of the order of GM/c2, i.e., where all possible components of 

the tensor field come into play ([Φik] 0   1   2), or where tensor gravitons depart from their mass 

surface and become essentially virtual particles, for example, where they exist only a short time of 

the order of (GM/c2)/c ~ 10-4-10-5 s for stellar mass objects and correspondingly huge (> 1014 g cm-3) 

density of the gravitational field on surface of such bags. 

Let us take once more the example of the vector field in ED. In this theory, in principle the same 

formula for the electromagnetic field energy density may be applied both in the case of a free field 

(corresponding to real photons) and in the case of a field around of a source (electron), i.e., in the 

case of a static field in vacuum (corresponding to almost real and virtual photons) interacting with 

the source. It is possible, at least in principle, because the obtaining of the field EMT in ED is done 

without use of the Lorentz gauge Ai
,i = 0 (see Landau and Lifshitz, 1973). Consequently, the scalar 

component of the vector field Ai is not excluded and this additional degree of freedom may, in 

principle, yield its contribution into the EMT of electromagnetic field. 
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Of course, here the question is only on possibility in principle of application of identical formulae 

for the field energy in the classical ED in two situations of 'charge absence'. Strictly speaking, the 

same formula for energy is applicable both in case of the free field and in the case of the field 

interacting with its sources only until photons near the charge (electron) depart considerably from 

their mass surface, i.e., photons must nevertheless be sufficiently 'almost real' for one may neglect the 

quantum effects of the e - e + pair creation. 

Coming back to GD in the scheme, suggested in [P1], the obtaining of the field EMT is 

substantiated only for every component ψ and Φik of the free gravitational field, i.e., of the field in 

the wave zone as a matter of fact. In this case one manages to secure confidently the positive 

definiteness of the field energy also. Therefore, strictly speaking, in GD (unlike what is at least in 

principle permitted in ED) one may not use directly, without reservation, the 'purely tensor' EMT 

formula (see formula (43) in [P1] for of the field with definite spin 2) when the tensor Φik has a 

vector part also. This can be particularly important in the case of a 'strongly' interacting (self-acting, 

more exactly here) gravitational field near the bag surface at r ≈ GM/c2, when the vector θik,k  differs 

considerably from zero: i.e., this is the case of essentially virtual gravitons - the vector Bi is 

'unfrozen' at least. But here one should keep in mind that apparently there is no method (like the 

analogous situation in QED) of Lorentz-covariant division of the field Φik into components for such 

virtual gravitons unlike what was made in [P1] for real gravitons. 

I emphasize once more that in [P1] the EMT formula was obtained for the free field real 

gravitons. Then it was applied (see equation (48) etc. in [P1]) for the case of the collapsar field, i.e., 

for virtual gravitons. Now it requires elucidations. 

Apparently, the first step which was made in [P1], i.e., the substitution 

Φ(p)
ik → θ ik(2)  , 

proves its value by the fact that at r >> GM/c2 we still deal with almost real gravitons of spin 2. But 

the next step like all the other 'approximations' 

Φik = Φ(p)
ik  + δΦik → θik

(2)   , 

will be of a small sense at the use of the same 'pure' EMT formula θik
(2) (for gravitons with the 

definite spin 2, see (43) in [P1]) for the tensor component of the field. 

An approach to the bag means that gravitons become more and more virtual, they depart more and 

more from their mass surface (pipi ≠ 0). One can assume that in that case the application of formula 

(43) from [P1] selects ('cuts out') the energy only for the spin 2 particles, though the vector Bi = 

δΦik
,k is nonzero already and conformably the particles of spin 0 and 1 appear. For all that this part of 

the total EMT (for spin 2 only) remains diagonal and traceless as before. 

If here also, as in the case with virtual photon, there is no a covariant selecting method for 
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additional components of virtual graviton, then correspondingly there is no a general method of the 

deduction of EMT of such gravitons (as a conserved quantity of a close system). There is a little 

sense in such 'deduction' because virtual particles are essentially interacting particles. We may speak 

about EMT of such particles only as about a stationary set in (for example, as a result of an exchange 

with the bag + the self-action processes) values of energy-momentum-tensions of gravitational 'coat' 

around the bag. 

Of course, one may hope that the total theoretical solution of the problem of energy of interacting 

gravitons will be at last carried out in a totally quantized GD. Here, like QED, the essential will be 

the question on a graviton propagator choice in the theoretic scheme under consideration with two 

types (ψ and Φik) of free fields. But it seems to me that preliminarily one can understand much in 

GD by the careful study of the sense of gauge conditions, conservation laws, etc., it is this that is 

made in this paper. One must always keep in mind that the question is mainly on the macroscopic 

theory (GD) and macroscopic objects. Remarks on these features which differ GD from 

microscopic quantum theories, such as QED and QCD, will be made at the end of the paper. 

Now I attempt to move forward going by the way of natural physical suppositions and continuing 

the use of the quantum field theory notions. For all that I shall always mean macroscopic situations, 

when there are so many gravitons that one may speak to (still with a high precision) about some 

'environment' around the bag, properties of which are given by the tensor θik. Ultimately observable 

effects predicted in this direction can resolve the gravitons energy problem by experiment as it was 

as a matter of fact in QED. 

Below we shall use here the signs θik
(ψ) and θik

(Φ) for EMTs of the ψ and Φik components 

correspondingly for the interacting fields near the bag. And the interacting scalar field EMT 

coincides with EMT (27) of real gravitons of spin 0: θik
(ψ) = θik

(0). 

Let us assume that: 

    1) Since the spherical symmetry remains valid also up to r ≈ GM/c2 it is natural to suppose that the 

'unfreezing' of additional components of the field tensor Φik does not 'spoil' the diagonality of its 

EMT θik
(Φ). 

     2) If the field Φik remains for r ≈ GM/c2 also massless as before (and quantum corrections/effects 

are still small), then such an 'unfreezing' of spins 0   1 must not 'spoil' also the tracelessness of the 

EMT θik
(Φ), taking into account all spins. 

     3) At last, the assumption remains valid about the energy positivity θ00
(Φ) for the interacting field 

Φik (of integer spin) even at the 'unfreezing' additional spins; and what is more, I continue to consider 

that the energy of these additional components remains positive (at least in sum) for spins 1 and 0 in 

Φik. 

Thus, near the bag for the case of the interacting field Φik the EMT θik
(Φ), taking account of all 
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spins, must remain as before diagonal, traceless and always with a positively determined θ00
(Φ)-

component. 

However, now let us make the substitution 

                                                    Φik = Φ(p)
ik + δΦik → θik

(2)   , 

in equation (43) from [P1] for the EMT θik
(2) which takes into account only spin 2 in Φik. As a result 

we obtain the diagonal tensor 

                                                  
2

00
(2) 2

1 1 1(1 4 4 ) (1, , , )
3 3 3

e er r diag
r r

     ,                                                 (28) 

where θ00
(2) = (l/l6π)(GM2/r4) and the re ≡ 1/3 GM/c2 is introduced here for the notational 

convenience. I would remind once more that the question is always on the space regions in vacuum 

around the bag at r > GM/c2 or r ≈ GM/c2, i.e., the bag itself is excluded from consideration.  

   In comparison with what was at the substitution in the formula for θik
(2) accounting only for spin 2 

in [P1] of the 'point' potential Φik
(p) (the case of almost real gravitons), we note now the decrease of 

energy for every r by the factor 

   
2

2(1 4 4 )e er r
r r

  1     at    r ≥ re  , 

and as a consequence, the condition of the equality of energies in every point of space for both 

components ψ and Φik, which was fulfilled in the case of almost real gravitons (see formula (47) in 

[P1]) is now broken 

                                                   θ00
(ψ) ≡ θ00

(0)   θ00
(2) 

2

2(1 4 4 )e er r
r r

    .                                          (29) 

But now (at r ≈ GM/c2) both types of gravitons (ψ and Φik) can already be essentially virtual 

particles. If one considers that the application of formula (43) from [P1] selects ('cuts out') the 

energy of only spin 2 gravitons in Φik, then the decrease of the right-hand side of (29) is explainable: 

simply in the right-hand side of inequality (29) it is not everything that is accounted for. 

Suppose that a contribution of 'unfrozen' additional virtual components of the tensor field Φik in 

accordance with the above-mentioned assumptions 1), 2), 3) is given by the tensor  

                                                                         

2
00
(2) 2

1 1 14 4 (1, , , )
3 3 3

( )e er r diag
r r

    .                                                      (30) 

Then if we add it to (28) we obtain for EMT of the field Φik the 'old' expression 

                                                  00
( ) (2) (2)

1 1 1(1, , , )
3 3 3

ik ikdiag       ,                                                     (31) 

in which the decrease of energy in (29) is compensated by the positive energy of the 'unfrozen' 

virtual components from diagonal and traceless tensor (30). 

As a matter of fact, a statement is formulated here which may serve as a basic, experimentally 
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verifiable assumption for the gravitational field around the bag: energy of the tensor field Φik with all 

its possible spin parts ([Φik]   0   1   2) is equal as before to the energy of purely scalar field ψ 

in every point, i.e. at any r > GM/c2 or r ≈ GM/c2.  It means that in every point around the bag the 

condition 

                                                  θik
(ψ) = θik

(Φ)                                                                                      (*) 

is fulfilled (see condition (47) in [P1]) which is true also for virtual gravitons of the collapsar static 

or stationary (more exactly) field. 

Thus equation (27) (θik
(0) ≡ θik

(ψ) ) together with the condition (*) are proposed here as a solution 

of the energy problem for the interacting collapsar field, if a bag radius R ≥ GM/c2 and M of order of 

solar masses and greater. From the foregoing it follows that the energy-momentum-tension for the 

'environment' around the bag of such a (macroscopic) dimension can be as before given by the 

tensor 

                                   
2

( ) ( ) (0) (2) 4

1 1 1 11, , ,
8 3 3 3

( )ik ik ik ik ik GM diag
r    

       .                             (32) 

In that case the tensor potential Φik for the outer field of the bag will have in all 'approximations' 

the identical appearance, coinciding with formula (28') in [P1]. I.e., nonzero components of the 

potential ψik for the collapsar field in vacuum will be, as before, 

                                        
2

00
/ 1 /1

2
)(GM f GM c

r r
     ,                                                               (33) 

                                          
2

11 22 33
/ 1 /1

6
)(GM f GM c

r r
        . 

5. Conclusions 

It should be said that the theoretical scheme developed in [P1] and in this paper differs radically 

from different variants of theoretical alternatives to GR by the fact that here gravitations are two 

types: scalar and tensor ones interacting with the matter by the identical coupling constant. I.e., 

there is a scalar field ψ – the unremovable 'superfluous' field component which corresponds to the 

scalar source T. Thus we develop the variant of the theory in which side by side with real spin 2 

massless gravitons there may exist real massless particles of spin 0 – massless scalar bosons. 

Unlike what was made in the paper by Sexl (1967), our scheme contains massless scalar field 

which is included in still completely gauge invariant theory with 5 gauge functions (10). What was 

called in the paper by Sexl the expulsion of the scalar ψ, in our case is only the separation of the 

scalar part from the tensor one in free field with 5 gauge conditions for the tensor component (see in 

[P1]). 
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Furthermore, it is essential to distinguish between two approximations in the theory: 

(1) The linear GD is a gauge-invariant theory where sources may be only points or a system of 

massive points bound by massless fields (gauge fields) as it is usual in a local theory of field. It is in 

this approximation where the Lorentz covariant division is made into scalar and purely tensor 

gravitational fields. The law Tik
,k = 0 means first of all the mass conservation law for interacting 

particles. 

(2) The nonlinear GD is a gauge-noninvariant theory. I.e., the introduction of non-linearities into 

GD is connected first and foremost with the 'violation' of the gauge invariance. In this approximation 

the mass of interacting particles is not conserved; the law Tik
,k = 0 (in connection with the violation of 

the gauge symmetry (10)) is not already fulfilled in the differential sense. 

In the nonlinear approximation of GD the vector divergence of the sum (Tik
(*) + θik),k is not equal to 

zero (25) in the collapsar strong field (near the bag) when elementary volumes of averaging are less 

than or of the order of (GM/c2)3. At distances r >> GM/c2, where the linear approximation of GD is 

correct, the elementary volumes by which the averaging is made in the differential law, may be much 

greater than (GM/c2)3. It results in the transition 

(Tik
(*) + θik),k → Tik

,k = 0   , 

which can be understood as the conservation law for particles together with their gravitational 'coats' 

(i.e., at r >> GM/c2  the 'degeneration' by M appears). 

We connect the introduction of non-linearities into GD first of all with the accounting in the 

interaction Lagrangian for the terms of type: 

fψikθik = fψikθik
(0) + fψikθik

(2) = fΦikθik
(0) + fΦikθik

(2)  , 

which we can correlate with corresponding elementary processes (19) in accordance with general 

laws. In a sense (see Section 1) it corresponds to transition from the tree approximation to the one-

loop approximation in QED. But there it is true that the terms  fψikθik  violate the gauge invariance 

(10) of the theory. (There are self-action processes of type (19) in QCD, but there they are included 

primordially in the gauge invariant scheme because of the non-Abelian character of the gauge 

group.) 

In this paper the quantum-field notions are often used and even elementary processes are 

mentioned that is more appropriate in a totally quantized theory. Indeed, after that I tried in [P1] and 

in this paper to elucidate the sense of gauge conditions one can try to approach to the procedure of 

quantization of the proposed variant of theoretical scheme. But in collapsar macroscopic cases under 

consideration quantum-field and classical notions coexist simultaneously. We speak about virtual 

and almost real gravitons. For the collapsars with the mass 10 Μʘ the virtual gravitons exist as real 

particles about 10-4s – these are rather big times in comparison with the muon lifetime (e.g.). The 
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almost real gravitons exist more than 3 min in case of the Sun - the Mercury exchange. The virtual 

gravitons in the case of cosmological objects with dimensions of their gravitational radius of the 

order of several astronomical units exist already during the hours as real particles. 

On the other hand, since for the description of the collapsar properties with the mass ~ Μʘ one 

may use the tensor θik for the same 'environment' around the bag. It means that there are many 

gravitons in every (cm)3 for the bag around with the radius greater than or of order of several 

kilometers. First of all here the 'weight' of every such (cm)3 of  'vacuum' around the bag is important. 

It becomes comparable with the 'weight' of (cm)3 inside the bag itself. Then the accounting for the 

gravitation of such 'vacuum' becomes important before the caring about quantum effects. 

The above remarks have for an object to emphasize the difference between macroscopic theory 

which GD is, and microscopic ones – the quantum theories QED and QCD with massless gauge 

fields. But here we emphasize also the common ideological base of GD and these theories. In 

particular, in the consistent dynamical theory of gravitational interaction one can and must seriously 

speak about virtual gravitons, not only about real ones. The very problem of quantization of 

gravitation inevitably poses the question about virtual gravitons (existing 'for a long macroscopic 

time' for the macroscopic collapsars), the main property of which, like of photons in QED and 

gluons in QCD is the presence of all possible polarization states for the symmetric tensor field (16). 

One can be occupied with the choice of a graviton propagator in this case. But at least it is clear 

already that the ('lost' in the linear GD) vector Bi = ψim
,m – ½ ψ,i  must be restored in the scheme 

with all the ensuing consequences for field energy and potential ψik near the bag. Before the 

fulfilment of a total quantization procedure it is questionable whether the equality θik
(ψ) = θik

(Φ) (*), 

based still on common reasonings, is sufficiently well-grounded. But my purpose in this paper 

would be half achieved if I managed to convince the reader that the account for all components of 

the field Φik is as necessary in GD (in the case of the strong collapsar field) as in QED and QCD in 

analogous cases demanding the accounting for all possible spin states of virtual photon and gluon. 

Indeed, since the condition θi
i = 0 causes the linearity of the purely scalar component ψ of 

gravitation, i.e., there is no vertex 

 

then satisfying once (in gauge invariant scheme still) the condition of the vector absence 

ψ(p)
ik

,k – ½ ψ ,i = Φ(p)
ik

,k – ¼ ψ ,i = 0  , 

one can never do that at r ~ GM/c2. The vector field Bi = δΦik
,k ≠ 0 will counteract. Certainly one 
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may doubt the choice of field EMT (32), but the taking into account of additional spins is necessary 

nevertheless. Thus the quantum properties of the field ψik  – the presence of additional spins in 

virtual particles – become apparent already in the half-classic, macroscopic situation with the 

collapsar. 

The tensor potential of the static field of the bag (33) obtained by allowing for the equality (*) 

must lead to certain experimental (observable) consequences. It could be testified in particular by the 

periastron shift effect in relativistic close binary systems. The shift effect must be described by the 

same 'old' formula [P1] as 
2

1 2 2

6 /
(1 )

GM c
e a


    


 

fulfilled because of (*) at all r >/~ GM/c2. Certainly, for all that one must not forget to take into 

account the more and more increasing role of gravitational emission from the system influencing 

the secular effects what is particularly important for small values of r ~ GM/c2. 

   A special paper will be dedicated to the study of observational consequences for potential (33). 

Ultimately, from (*) one must obtain the picture of properties of the bag, of its surface and the field 

around, consistent with all other physics. These properties must lead to absolutely definite 

experimental (observational) tests allowing distinguishing the collapsars in GD from black holes in 

GR. 
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