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Abstract. From the point of view of a totally nonmetric model of the theory of gravitational interaction, i.e., 
in the bounds of a consistent dynamic description of  gravitation (gravidynamics) a possibility is pointed out 
of additional loss of energy for the radiation of scalar gravitational waves. Such a radiation arises due to 
(in particular, periodic) variations, for example, spherically-symmetric pulsations, in a radiating system and 
is connected with time change of kinetic energy of system. The scalar gravitational 'luminosity' in gravi- 
dynamics is of the same order (~  G/c ~) as the system energy loss for the radiation of 'usual' tensor 
gravitational waves of general relativity. Perhaps, for a binary system with a nonzero eccentricity it is 
necessary to account for the influence of scalar radiation on a secular variation of the companion's orbit 
parameters. The contribution of the scalar radiation into a total gravitational 'luminosity' of the system 
with a radio pulsar PSR 1913+ 16 can be of the value about 2.2% of the radiation power of the 
tensor gravitational waves. It can have a considerable effect at measurements of the fall rate of orbital 
period (~i'b) of the binary system, and the corresponding contribution into ~b b can be equal to 
A / b ~  -0.053 x 10-12ss  I. 

1. Introduction 

In this paper as in the very first paper (Sokolov and Baryshev, 1980) on the same topic 
I continue insisting on an idea that the problem of energy-momentum of gravitational 
field remains a central problem of gravitational physics. In other words, any theoretical 
scheme pretending to consistent and complete description of gravitational interaction 
must give concrete answers to questions about the sign, the value, the localibility of field 
energy and momentum in every point of space. 

Proceeding from general demands being the basis of theoretical field (dynamic) 
description of gravitation, we grounded in the paper (Sokolov and Baryshev, 1980) the 
choice of an expression for 0~k - the energy-momentum tensor (EMT) of gravitational 
field. We proceeded from the requirement (Sokolov and Baryshev, 1980; Sokolov, 
1992a) that 

(1) a result EMT must be symmetric 0;~ = 0ki; 

(2) it must have a trace identically equal to zero (t/ik0ek= 0, where r/,. k = 
= diag(+ 1, - 1, - 1, - 1), that is connected with zero mass of gravitons; 

(3) the EMT must always give a positively defined density of gravitation field energy 
(0oo > 0), it concerns every component separately: both scalar field component 
(0(~ > 0) and the tensor one (0~~ >~ 0). 

However, general principles alone do not give the firm belief that the choice of the 
field EMT appearance is right. Of course, crucial arguments (besides theoretical ones) 
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could here be experiments in which the sign and the value of energy would be consider- 
able. As it was noted to the essence of the matter in a paper by Thirring (1961), it turns 
out that it is in the theoretical field, dynamic interpretation of gravitational interaction 
where the account for the gravitation field energy continuously distributed in space 
around the field source gives (at least to the value order) the contribution comparable 
with observational one in the perihelion shift &p of the planet orbits in the Sun field. 
It is a so-called 'nonlinear effect' or a nonlinear contribution which is not managed to 
describe totally allowing only for the relativistic lag of gravitational interaction. 

In other words, the Mercury's perihelion shift, in particular, requires the calculation 
of nonlinear corrections to the tensor 4-potential of the Sun field, the corrections arising 
due to allowing for the EMT of the very field in the right side of the field equations. 
Naturally, we have used the circumstance and have chosen in papers by Sokolov and 
Baryshev (1980) and Sokolov (1992a) an expression for the EMT the simplest in a sense 
from possible ones, satisfying the three above-mentioned conditions and which leads 
ultimately to the right explanation of the observed shift of the Mercury's perihelion in 
100 years. I.e., we used directly the fact that in consistent theoretical field scheme 
describing gravitation, in gravidynamics (GD) the choice of the EMT is restricted by 
experiment. 

The details of reasoning leading to the choice of the expression for the field EMT and 
a consistent allowing for nonlinear contribution into the Mercury's perihelion shift effect 
(6q~ = 6q01 + bqh ) can be found in cited papers (Sokolov and Baryshev, 1980; Sokolov, 
1992a). In particular, in Sokolov (1992a) unlike Sokolov and Baryshev (1980) the 
contribution into the EMT was marked out of every gravitation component - the scalar 
one, described by a scalar ~, and the tensor one with a tensor potential qbik (~b,.kr/;k = 0). 
In such a case the EMT of gravitational field Oik has the appearance 

where 

and 

0 ik = 0[~)+ 0[~), (1) 

= - . . . .  4 ' , , .  - � 8 9  (2) 

~[~) 4 taF. ia~-mn k 1 i k f l ) m n ,  l ( l  ) 1_( D r i k ) .  
= ~a~t l~rn  n" tlJ " --  4 ~  ~ ~ m n ,  l -- 2 ~ m n ~  ' (3) 

and where the constant a is determined ultimately only by the choice of the units of 
potential measurement of scalar and tensor components of gravitation (see later). 

It follows from (1), (2), (3) that for the gravitational field of the object of the mass 
M resting in the origin of coordinates in every point at the distance r from the center 
independently of Descartes's axes direction the field energy-tension of such a centrally- 
symmetric problem is given by the tensor 

0 ~k = 0 ~176 diag(1, �89 �89 _1)3, (4) 

where 
1 G M  z 

0 ~176 - ( 5 )  
8 ~ F 4 
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This energy-tension tensor for vacuum around a gravitating center corresponds to 

certain 'medium' which can be imagined consisting of a relativistic 'gas' of  virtual (more 
precise, almost real at r >> GM/c  2) gravitons. Here a fact is essential that the energy and 

the pressure of 'the gas' of scalar gravitons in every point of space around the source 
are equal to the energy and the pressure of 'the gas' of virtual tensor gravitons 

0~) = 0~~) = ~lA~176 diag(1, 15, 5,1 !)3 �9 (6) 

These are formulae (4), (5), (6) which lead ultimately to the total explanation of the 
shift ~Sq0 of planetary orbits perihelia. A nonlinear contribution into the Mercury's 
perihelion shift turns out to be equal to (e is an eccentricity, aR is a semi-major axis of 

the orbit) 
rc GM/c  2 

boP2 
(1 - e 2) a R 

which gives in sum with the shift /Sq) 1 due to a (linear) effect of relativistic lag of 
gravitational interaction (see Sokolov, 1992a) the known result: namely, 

6 rc GM/c  2 
I)q? = ()(Pl + ~(]92 -- ( 7 )  

(1  - e 2) a R 

I emphasize here once more that a sign of &o 2 - of 'nonlinear effect' of perihelia shifts 
- is connected directly with the sign of the gravitational field energy 0 ~176 in (5). 

Of course, Equation (7) is tested also by the effect of perihelia shifts in relativistic close 
binaries. In particular, it was perfectly confirmed as soon it was started to observe 
systematically a binary with a pulsar PSR 1913 + 16 (Taylor et al., 1979). But due to the 
fact that this formula coincides totally with the one obtained in GR long ago (in 
geometrodynamics) and simply due to the fact that in the case gravidynamics (GD) 
'explains' the effect discovered a hundred years ago, such an observational restriction 
to the choice of the EMT of gravitation can seem on the face of it a certain method 
particularly of the same GR allowing to treat old facts somewhat otherwise. In such a 
situation it would be desirable to obtain absolutely new observational consequences 
connected with the choice of the field EMT. For all this the consequences are needed 
which would be connected with essential differences of GD from a geometric inter- 
pretation of gravitation in GR. 

A theoretical scheme of gravidynamics developed by us in Sokolov and Baryshev 
(1980) and Sokolov (1992a) differs in its basic principles from GR and different 
theoretical variants alternative to GR by the fact that gravitation is here two components 
- scalar and tensor ones. For all this, for the description of interaction between field 
and matter (particles and fields) we need not at all an introduction of two coupling 
constants for every component of gravitation ~ and ~,k as it was done, for example, in 

a known (bimetric) theory by Brans-Dicke. In GD the coupling constant is only one (see 
Sokolov, 1990, 1992b), and nevertheless we develop a theory variant in which along with 
real and massless gravitons of spin 2 there exist also real massless gravitons of spin 0 
- massless scalar bosons. 
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Thus, in GD the radiation of scalar (longitudinal) gravitational waves by a system is 
possible, and as far as in GR the gravitational radiation is only a tensor one, then a 
possibility arises of the test of a corresponding component of the tensor 0~k in 
Equation (1) in the case, for example, of the same binary system with the pulsar 
PSR 1913 + 16. (0oo-component of the tensor 0ik is tested, as it was mentioned above, 
in Equation (7).) 

Both tensor and scalar gravitational waves are radiated by the system simultaneously 
by force of the fact that both components of gravitation interact with its source with the 
same coupling constant f (it was emphasized specially above!). The corresponding 
equations of field for the scalar ~ and the tensor O~k (qSiktff - 0) can be presented in 
the form 

[] 0 = ~ f  r ,  (8) 
2 a c  2 

[--](I)~k- f T,(ff ) . (9) 
2 a c  2 

In that case - i.e., at the presence of sources on the right-hand side of Equations (8) 
and (9) - the scalar ~ and the tensor O,-k are connected yet by Gilbert-Lorentz's gauge 
condition 

B i = c~i~ 1 i , m - a @  = 0 ,  

which excludes a 'superfluous' vector field B; (see in detail Sokolov, 1992b). The scalar 
T = r/ikT ik in (8) is the trace of the EMT of particles-sources of field, the tensor T}~ ) 
is amasslesspart  T} 2) Tik 1 = - a rhk T of the EMT of particles constituting the radiating 
system. 

2. Free Scalar and Tensor Gravitational Fields 

To demonstrate more clearly the moments common in GR and the innovations given 
by GD in the case of gravitational waves, below the whole account will be constructed 
analogously to that was made in a known textbook (Landau and Lifshitz, 1973) in the 
chapter 'Gravitational Waves'. Of course, the question will be first of all on l i n e a r  GD 
(Sokolov, 1990, 1992a, b). 

Let us consider firstly the simplest case of the solutions of the equations of field, when 
there are no sources at all. I.e., this is the case of free gravitational waves and corre- 
sponding equations of free scalar and tensor fields will be 

Dr  0,  (8') 

Dr = 0 ; (9') 

from which it follows that ~ and ~ik-fields propagate with the same velocity - the velocity 
of light c. For plane waves, propagating along the X-axis (x I = x) these equations have 
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the form 

Solutions of (*) are any functions of (t  +_ x / c )  and if we consider the case of the wave 
propagating in the positive direction of the X-axis then ~k and all the values of q~;~ will 
be functions of (t  - x / c )  only. 

In the case of free fields ~ and q~,~ far from sources, both components of gravitation 
are absolutely independent fields and it is necessary to use as condition, excluding a 
vector field, a gauge condition 

Iffl)`.nr, i ~ l  ~ -  O 

(see in detail Sokolov, 1992a; Section 5). If we use these additional conditions for the 
functions Oe~ we obtain (i9 l i  - -  ( j ) 0 i  = 0 (the point is the differentiation by t). And for 

separate components & the  tensor qbik, as in the textbook (Landau and Lifshitz, 1973) 
we obtain the relations 

( I ) l l  = ( ID01  (I)12 = i j i )02  (i)13 = ( ID03 (I)10 = ~oo. (10) 

But the condition q)*m, m = 0 allows still the change of potentials by means of(gauge) 
transform 

qbik ~ q~ + Ae, k + A<`., 

where A .̀ can also be chosen in the form of a plane wave (4-vector Ai is the solution of 
the wave equation ffJA, = 0) propagating in a positive direction of the X-axis: 
A`.(t  - x / c ) .  By use of these four functions, let us make zero four-values q~Ol, ~o2, ~o3, 
a n d  (I)22 + 1~33. Then from (10) it follows that the components (I) 11, (1)1=, I~D 13, I~ 00 also 

become zero. As a result only the values ~32 and (qb 22 - ~33) remain nonzero: the 

transform with the 4-vector A , ( t  - x / c )  does not concern these components at all. 
Here (in GD) we deal from the very beginning with the traceless tensor @ik: i.e., 

t~ilc(~ik = (I)00 -- (I) 11 -- (ID 22 -- (1333 = (I~ 22 4- 0 33)  = 0 ; 

and correspondingly, we have not obtained anything new by manipulations with 
4-vector A i. Simply, the potentials transform of the type of q b i ~  O ik + W' ~ + A k, "must 
be such one that not only keep unchanged the condition O ~m, m = 0 but also keep in force 
the condition of identical zeroing of the trace of the tensor q~k- There is once more 
(essential!) difference from reasoning adduced in Landau and Lifshitz (1973) for the 
case of a metric theory which GR is. 

Thus, a plane tensor gravitational wave propagating in positive direction of the X-axis 
is determined by two values only: ~23 = q ) 2 3 (  t - x/c) and d02= = l i b 2 2 ( t  - x/c) = - -  t ] ) 3 3  , 

i.e., these are 'usual' transverse gravitational waves, the polarization of which is deter- 
mined by a symmetric tensor of the second rank in the YZ-plane and the sum of diagonal 
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elements is equal to zero: 

-0 0 

0 0 
q)ik = 

0 0 

0 0 

~ 1 7 6  I 
0 0 

(1)22 (I)23 

(I)32 (ID33 j 

Correspondingly, from the first equation (*) it follows that it describes longitudinal 
gravitational waves propagating in the direction of the X-axis, if ~ = ~p(t - x/c): this 
wave has no other component, 

Below the question is on plane and monochromatic tensor and scalar gravitational 
waves propagating in the positive direction of the X-axis (the frequency of waves q~ik and 

is the same): i.e., 

= a (o )cos  (cot - k x ) ,  

i: 000- 
~ik = 0 0 0 

0 a22 a23 

0 a32 a33 

where co = kc, k = 2rc/2. 

(11) 

cos (co t  - k x ) ,  (12) 

Now, analogously to that was made in Landau and Lifshitz (1973) but for two 
potentials (11) and (12) we can calculate the energy fluxes in the X-axis direction for 
every of two types of gravitational waves. In particular, for the tensor radiation density 
flux according to (3) we have (to within the division on c): 

0(02)= /4.T. 0 . . . .  1 2r i-[,i mn, 01 ) (13)  
a t ~ m n  ~ " - 3 ~ m n ~  

For nonzero components of traceless tensor q~;k in this formula it is necessary to 
account for the monochromatic character of the plane wave (12) and to use the fact that 
period average values of sina(cot - kx )  and cos2(cot - kx )  coincides. Then expressing 
again everything by q523 and ~33, we have for period average energy flux density in the 
X-axis direction the expression 

(cO~o~) -4a [ ( 1 ~ ) 2 3 )  -1- (1~)23)1  ' (14) 
C 

For the energy flux calculation in plane 0-wave propagating along the X-axis we pick 
out from general formula (2) for the EMT of scalar field 0t-component 

= ~ a ( ~ ,  0 - ~  ~- �9 
0~1) 3 4  ,0 ,1 2~/dt, O1 ) 

After all derivatives have been calculated and allowance made for the fact that period 
average values of sin 2 and cos 2 coincides, and then everything expressed again by 
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~b = a(o ~ cos(cot - kx) we obtain as a result for the period average flux of the scalar 

radiation in monochromatic plane wave, i.e., (1 l) 

(c0~1)) = 3 2 a  1 ( ~ 2 ) .  (15) 
C 

Plane waves (11) and (12) determine a free field or real gravitons. Here there are no 
field sources at all. It is a pure case when there is no admixture of virtual gravitons also. 

The fact that scalar and tensor gravitons can have the same origin, is fixed in (11) and 

(12) so far only by the fact that both wave types have the same frequency. But, generally 

speaking, these can be fields absolutely independent and free of any conditions. 

3. The Radiation of  Tensor and Scalar Gravitational Waves in Linear 

Gravidynamics 

To emphasize the circumstance that both components of gravitation can be radiated by 

the same source, it is necessary to return to general equations (8) and (9), where the fields 
and ~e~ are still connected. This system of equation can be represented in an equivalent 

form 

[ ] ( * ~  - �88 f T ~ . (16) 
2ac 2 

It follows from (16) that if the sources on the right-hand side are conserved (the case 
of linear G D  (Sokolov, 1992a)), when 

T i k ,  k = 0 ,  (17) 

then it is just the case to which the condition guaranteeing the absence of the vector field 
corresponds to 

B i = ~)ik 1. ik.t. ,k - ~r/ qJ.k = 0.  (17') 

Of  coarse, conditions (17) are true only as far as linear approximation of G D  is true. 

Remaining in the bounds of this approximation, when conditions (17) and (17') can be 

considered fulfilled with a high precision, we are going to consider here in detail the case 

of a weak gravitational field generated by a system of bodies moving with smaU velocities 

in comparison with c and at rather far distances from a radiating system: i.e., in the wave 
zone. 

The solution of Equation (16) in the wave zone and at slow motions in the source 
have the form 

f 1 

where r >2> r ' ,  d V' = dx '  dy' dz' at v ~ r 

(18) 
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Let us obtain first the formulae for the 'usual' tensor radiation, moreover, that here 
the reasoning is analogous to those adduced in Landau and Lifshitz (1973). The 
integrals of space components &the source T ~ (and we shall need only them ultimately) 
can be expressed by the integrals containing only T~176 at the use of con- 
dition (17). In linear approximation of GD (see Sokolov, 1992a) it can be assumed that 
the masses of the radiating system bodies do not change or the energy radiated by the 
system is negligible in comparison with the total energy of the system (Mc2), i.e., the 
sources are conserved. As a result we have 

f r 'dV' 1( )2f = - T ~ 1 7 6  d V ' .  
2 

(19) 

For the EMT of the particles sources in (18), distributed in space with the density/~ and 
moving with velocities v, from the general expression for T oo we have, in particular, 
T oo = i ~ c 2 / x / 1  - v2 / c  2. At slow motions ( v / c  4~ 1) inside the radiating system T oo can 

be presented in the form of the series 

1 v 2 3 v 4 ) 
T ~ 2 1 + - - - + - - - + ' "  . (20) 

2 C 2 8 C 4 

At rather small motions in the system, when even the second power of the ratio v /c  will 
be small, in (20) only the first term of the serie can be kept. It corresponds to the fact 
that in (19) we restrict ourselves only by terms proportional to the second power of v /c :  

namely, as the second power of v /c  always presents (implicitly) in (19) at least once time. 
In such a case we obtain for space components T ~ in (18) the expression 

f 1 
- - - l ~ x ~ x ~ d V  ' . (21) 

167cac 2 r ~t  2 

At far distances from the radiating system the field ultimately turns out to be free, and 

we deal with real gravitons. It is this field 'torn off' the sources which takes away the 
energy from the system. At far distances we can consider any wave to be a plane one 
in small scale and, consequently, using solution (21) we can calculate also the energy 
flux radiated by the system, for example, in the X-axis direction by means of 

Equation (14). 
From (21) we shall need only the components @23 and (1I)22 -- ( I )33) .  As far as in the 

left-hand side of (21) the scalar ~ slips out for all that, then, as in Landau and Lifshitz 
(1973), at the calculation of q~23 and (q522 - q~33) we can use the tensor of quadrupole 
moment in the mass distribution of the radiating system 

D~p  = f ~ ( 3 x ~ x l ~  - r 2 ~ )  dV. 

Ultimately, for unknown components of the tensor potential qbek of the plane wave 
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propagating in the positive direction of the X-axis we have 

0 0 2 3 -  f 1 1523 , 
48 rcac 2 r 

(0022 - 0033) - f 1 (~J22 - s , 
48 rcac 2 r 

(22) 

where 0022 = - 0033. 
Now let this wave be not only a plane one but also the monochromatic wave of type 

of(12). Then we can use formula (14) and for the period average energy flux in the X-axis 
direction we have 

_ G I I / (D22  - D33)2 ) ] 
> 36 cs ,2 + . (23) 

In this expression all uncertainties connected with the choice of potential measurement 
units have disappeared, since I used a universal connection fz  = 1 6 r c a G  (Sokolov, 

1992a). 
Equation (23) coincides to within the sign of averaging over monochromatic wave 

period with that was obtained long ago for the tensor radiation in GR. Now, carrying 
out exactly the same as in Landau and Lifshitz (1973) averaging over all polarizations 
for the time average power of monochromatic radiation of purely tensor waves (for 
'tensor gravitational luminosity') we have as a result, 

2 do ~ G ( D ~ )  (24) L(2 ) = - 
(2) 45c 5 

The fact that for an observed value L(2) we obtained ultimately here (in GD) the same 
as in GR is not surprising. The equations of field in GD (see Sokolov and Baryshev, 
1980; Sokolov, 1990, 1992a) are the same as Einstein's equations, and it is the geometric 
interpretation of these equations in GR, which allows to speak about the tensor field 
only, the 'tensor' luminosity (24). In consistent dynamic interpretation of the same 
equations (in GD)4-scalars 0and T are given an absolutely definite physical sense and, 
correspondingly, it is necessary to allow for the energy lost by system for the scalar 
radiation - the scalar luminosity. 

Indeed, in formula (18) the calculations were carried out for traceless tensor 00ik only. 
At the same time, the scalar component of the source T = T m and 4-scalar 0 corre- 
sponding to it, in GD must give an additional contribution into the gravitational 
luminosity of the system. The scalar component ~ of gravitation is the solution of 
Equation (8) and in the case of slow ( v 2 / c  2 4~ 1) motions inside the system (in the source) 
the solution of the equation in the wave zone can be obtained simply by the convolution 
of tensors in (18) of the form 

_ f _l t- T(r ' ,  t - r / c )  d V '  . (25) 
8 ~ a c  a r 2 
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For the trace of the EMT of particles, constituting the radiating system, we have 
T = #c  2 x/ l l  - v2/c 2, and as far as here we consider the case of slow motions then 
x / 1  - v2/c 2 can be expanded by a small parameter v2/c 2 ~ 1. Then for T we have 

2 12 2 - - 8  C 4 . . . .  " ( 2 6 )  

If to neglect now here all the serie terms depending on velocities inside the system 

as in the case of expansion (20) for T~176 then from (25) we obtain 

= 0 -- #(r ' ,  t -  r/c) d V '  . 
87ra r 

This integral going over volume containing all bodies (all particles) of the system do not 
depend on time in the approximation which was used at the consideration of tensor 
radiation also. And, namely, the system mass at all motions in it: i.e., for any dependence 
of/~ on time, is the same. 

On the other hand, in the case of the tensor radiation it is the presence in (19) of the 
second power of time derivative which allowed us to keep in (20) the first term of 
expansion only. Consequently, in the same approximation, i.e., to within terms of the 
second rank of v/c ~ 1 for the case of scalar radiation in (26) it is necessary to keep also 
the second term of expansion into v2/c 2 powers. 

Thus it can be said that provided the total mass of all bodies of radiating system is 
conserved (as the mass of each of them separately) the tensor radiation arises due to 
the fact that in the system there is a sufficiently quick and sufficiently nonsymmetric time 
change of its mass distribution #(r) (24). At the same time the scalar radiation arises 
due to the time variation o f  kinetic energy of particles constituting the system. As a result 
the scalar radiation leads to the fall of the system 'temperature'. 

But if we refuse the rest mass conservation condition 

Ox k g dt J 

then we find ourselves out of bounds of linear GD approximation. On the analogy of 
GR it will be already the case of the strong gravitational radiation and, in particular, 
of the strong scalar radiation. Of course, a special consideration is needed at the 

considerable unconservation of the rest masses of particles interacting gravitationally. 
But for this problem (essentially unstable one!) also the tendency is basically clear now 
already: the tensor waves 'radiate' mainly the asymmetric mass distribution in the 
system, i.e., the system becomes more spherical as a result. And the scalar radiation 
takes away the energy of inner motions of the system even when the radiating system 
is absolutely symmetric. In particular, the compression energy at a spherically- 
symmetric collapse or at spherically-symmetric pulsations is taken away from the 
system in the form of scalar (longitudinal) gravitational waves. 
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In this paper we restrict ourselves so far only by the bounds of linear GD, when the 
body masses of a system (binary one, for example) are constant and, consequently, the 

total energy (Mc 2) of the system changes negligibly at the radiation of gravitational 
waves of both types. That is here the question is always on weak tensor and scalar 
gravitational waves and, correspondingly, the wave amplitudes must be sufficiently 
small. It is necessary to keep in mind these remarks always in every concrete case by 

use of the formulae obtained below. 
Thus in (26) at v2 /c  2 ~ 1 we keep besides the first term the second term of expansion 

also and, substituting it in (25), we have 

O = f 1 f ( l y e )  /~c 2 1 - -  d V ' .  
8 ~ a c  2 r 2 

Dropping a constant integral we obtain for the 'radiated' 0-field to be given by 

_ f 1 ~ / ~ v  2 d V ' .  (27) 0 
8 g a c  2 r J c 2 

Generally speaking, here it is meant that # = #(r ' ,  t - r / c )  and ~)2 = vZ(r ,, t - r /c ) .  

Now, we are going to use below this general (in linear GD) expression for the part, 
changing in time, of the scalar potential, at far distance from radiating system, at small 
( v 2 / c  2 ~ 1) velocities in it, in the concrete case of a binary system. As usual, we can 
reduce it to the case of the motion of one particle only of a reduced mass in central field. 
For one particle from the formula # = Z a m a b ( r '  - ra)  we obtain # = m~5(r' - ro) and 
from (27) we have 

f 1 mv2(ro, t - r / c )  
O - (28) 

8 ~ a c  2 r 2 

Thus, we have here a lagging scalar field O(t  - r / c )  of a particle of mass m, situated 
(oscillating) somewhere near the origin of coordinates (ro). This is a scalar wave radiated 
by a mass 'tied' to the center, and the character of the dependence of 0 on time is 
determined by the character of oscillations of mass m near the origin of coordinates. 
Assuming that these oscillations occur with a certain frequency co, we shall deal 
ultimately with a plane monochromatic wave of the type of (II) that allows to calculate 
the gravitational luminosity connected with the scalar radiation, using Equation (15) for 
the flux in the X-axis direction. 

By use of the connection of measure constants j a  = 16z~aG,  it can be obtained 

3G 1 
/ /?0). "~ - -  " 2  (29) 
. c ~ o , .  8 ~  ~ r 2 

for the period average flux. For the scalar waves radiation power, which is wave period 
average or average over period of oscillation in the source (for the 'scalar' gravitational 
luminosity or for mean rate of the system energy fall due to 0-waves) it can be obtained 
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ultimately that 

L(o) = _ _ " 2 
(0~ 2C 5 

Hereafter the rate of the system parameters change due to gravitational radiation, 
and we shall use sometimes the notation of the time derivative in the form of d/dt 
to differ it from the time differentiation connected with an (orbital) motion in the 
system. 

As it was expected the 'scalar' gravitational luminosity (30) turns out to be of the same 
order (~  G/c 5) as the tensor luminosity. 

4. The Scalar Radiation and the Secular Reduction of the Orbital Period of the 
Binary System with a Radio Pulsar PSR 1913 + 16 

In this section the formulae obtained above will be applicated directly to the case of 
a close binary system with a radio pulsar PSR 1913 + 16 which is observed leading off 
1974 (Taylor et al., 1979) in Aquila constellation. Here I shall be interested mainly in 
effects connected with the energy dissipation which are described by Equations (24) and 
(especially) (30). All other relativistic effects tested in this natural laboratory, other 
things being equal (i.e., at the same parameters of the system), coincide totally for GD 
with that GR gives. Ultimately in GD we also deal with exactly the same formulae for 
the shift of the companions orbit periastra, for the gravitational red shift and for 
relativistic time delay of the radio signal (Sokolov, 1992a). And only the presence of a 
small, and apparently measurable in the nearest future, addition to the 'tensor' (i.e., 
connected with the tensor radiation (24)) reduction of the orbit dimension due to the 
scalar radiation (30) allows to hope for the perfection of the semi-phenomenology of GR 
in the notions of gravitational waves. 

Firstly, there will be adduced the calculation with Equaton (24) for the tensor radia- 
tion in the case of the two bodies of masses m, and m 2 attracting themselves by 
Newton's law and moving along elliptic orbits around a common center of inertia (see 
the problem in Chapter 13 in Landau and Lifshitz, 1973). The influence of 'tensor' 
luminosity is accounted exactly as it was made in Peters and Mathews (1963) and 
adduced then in the textbook by Landau and Lifshitz (1973). In particular, for the 
(rotation period) average energy lost by such a system in the form of tensor radiation 
only, the result is obtained which is known in GR for a long time: i.e., 

d• 1 = 32G4mZmZ(ml + m 2 )  

( - ~dTt _(z~ 5c5a~ f (e) ,  (31) 

where aR is a big semi-axis of orbit and where for the function depending only on the 
system's eccentricity e we have 

( 73e2 37 ) f(e) = 1 + - -  + - -  e 4 ( 1  - e 2 )  - 7 / 2  (32) 
24 96 
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Owing to the radiation of gravitational waves by the system, a part of the total energy 

of orbital motion is 'radiated' away: i.e., 

S o = _ Grnffn2/2a R ; 

and as a result the orbital dimension, its eccentricity and the orbital period must reduce. 
In particular, for such a value, measured directly in experiment (Taylor et al., 1979), as 
the velocity of the secular change of orbital period ~b b we obtain 

( ) - 2 4 

Moreover, allowing now only for the loss for tensor radiation - i.e., assuming that 

d 4 ;  d~  

we shall have 

192~z (27rG] 5/3 mlm2 (33) 
(]~b)(2)-  5c s k ~ /  f (e)  (mi + m 2 )  1/3 

In such a form the formula for ~h b is used at the interpretation of results of the 
observation of binary system with PSR 1913 + 16 in the latest paper by Taylor and 
Weisberg (1989). Here I emphasize once more that the rest &formulae for effects which 
are not connected with the energy dissipation into the gravitational radiation (the 
periastra motion, the red shift, the relativistic time lag of pulsations coming) remain in 
GD exactly the same as in GR. Consequently, the results of calculation of masses 
(m 1 + m2), ml, of eccentricity e at a given Pb, made in Taylor and Weisberg (1989), will 
also be exactly the same. But at increasing precision of parameters measurement of the 
orbit studied since 1974 (Taylor etal., 1979; Taylor and Weisberg, 1989) (see the 
literature in Taylor and Weisberg, 1989) of the binary system with a pulsar, the con- 
tribution into the observed ~b b - secular change of the orbit period connected with the 
scalar gravitational luminosity (30) - must become appreciable ultimately. 

For the system with a reduced mass m = rnlm2/(m I + rn2) the kinetic energy is equal 
to 

my 2 Gmlm 2 (1 + 2e cos ~R + e2)  
~aki n - -  

2 2a R 1 - e 2 

where fir is a polar angle in the XY-plane for the vector r = r I - r e (see Landau and 
Lifshitz, 1973). It is necessary to substitute this expression in (30) and to average over 
the rotation period. As a result we obtain for the secular fall of the orbit motion energy 
due to the scalar radiation only (i.e., for the scalar luminosity of the system) 

I d ~ )  3 G4mZmz(ml + m2) 
- dtt (o) = 4 cSa~-~R f(~ (34) 
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In this case the function depending only on the system eccentricity will have the form 

1 2 �9 ( 3 5 )  f(o~(e) = e2(1 + ~e )(1 - e2) -v/2 

To within numerical coefficients and the function f(o~ (e), Equation (34) coincides with 
Equation (31) for the loss of energy for tensor radiation. That is these effects are indeed 
of the same order. The difference between these two effects of gravitation waves 
radiation is the fact that since the kinetic energy of the system is constant at a zero 
eccentricity of the system orbit, then at e = 0 there is no scalar radiation also. At the 
same time the loss for tensor radiation is nonzero even for round ('nonpulsing') orbit. 
Thus, a binary system always radiates the energy connected with the change of its 
quadrupole moment in the mass distribution. That is the asymmetry of this distribution 
is 'radiated' away. Generally speaking, there is one more source which makes a definite 
contribution into the gravitational radiation of the binary system, it is a kinetic energy 
changing in time. That is it can be said that the energy of 'pulsations' connected with 
nonzero eccentricity of companion orbits is radiated. Of course, Equations (31) and (34) 
will be true until these companions approach so close that it will become impossible to 
use the approximation of linear GD. 

Since the scalar radiation is gray• of zero spin, they must not change the moment 
of binary system by definition. It can be made sure directly by calculations analogous 
to that was made in Landau and Lifshitz (1973). That is why an additional, due to loss 
(34), secular fall of the system eccentricity, like a secular fall of its dimension and the 
orbit motion period, depend here only on the rate of corresponding secular change of 
the orbit motion energy. In particular, for an additional contribution into the secular fall 
of orbit period we can obtain at 

dEb; = dg~ , 

/ . r2  15/3 (e) mlm2 (36) 
= - 2 c  5 \ eb ) (m, + m2) 1/3 ' 

again in the form adopted in Taylor and Weisberg (1989). 
Now let us set about numeric estimations. 
According to data published in 1979 (Taylor et al., 1979), binary system with radio 

pulsar PSR 1913 § 16 was characterized by the parameters e = 0.617155 +_ 0.000007; 
Pb -- 27906, 98172 • 0.00005 s, m 1 = (1.39 • 0.15)Mo; m 2 = (1.44 • 0.15)M o. (The 
periastron shift determined in Taylor etal .  (1979) was found to be equal to 
4.226 • 0.002 grad y r -  1.) 

The observed value of secular fall of the orbit period was determined then (in 1979) 
in such a way that 

~bb(obs 1979) = ( - 3.2 • 0.6) x 10- 12 S S--1 (37) 

The secular fall of period due to tensor radiation only (33) (it is the prediction of GR 
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also) at parameters pointed out will be 

(Pb)(2)  = -2 .405 x 10-12ss -1 (40') 

At the same system parameters the contribution into Pb arising due to loss for the scalar 
radiation (36) will be 

( P b ) ( 0 )  = - - 0 . 0 5 3  X 1 0 - 1 2  S S - 1  ( 4 1 ' )  

Thus, the contribution into Pb due to scalar loss is only 2.2~o of (Pb)(2) and at the 
precision ( ~  18~o) to which the value ]'b (37) was known in 1979, certainly it is 
impossible yet to feel this contribution. 

The precision of theoretical estimations of ( P b )  is determined mainly by the preci- 
sion of determination of companion masses m r and m 2. Therefore, a total theoretical 

estimate of ~h b it could have been written as early as in 1979: namely, 

~hb(theor 1979) = - (2.458 + 0.008) x 10 12 s s -  l (38) 

This value of Pb can be regarded as an expected one in GD and, consequently, it is 
necessary to seek such a precision of the value Pb measurement that for Pb(obs) the third 
figure after point would be reliably measured. I.e., it is necessary to measure Pb to within 
0.3 ~o for to fix for sure the fact of the radiation of the scalar gravitational waves by the 
system PSR 1913 + 16. 

As a result of systematic observations of this binary system the precision of the ~h b 
measurement increased sharply as soon as the data were treated accumulated during 
about 14 years - from 1974 to 1988. In 1989, Taylor and Weisberg (1989) published an 
observed value of the secular fall of orbit period of binary system with the radio pulsar, 
which was equal to 

~hb(obs 1989) = ( -  2.427 + 0.026) x 10-12s s-1 (39) 

and */'b determination precision became equal to 1.07~o. Now the masses also of both 
companions of the binary system are known with more high precision: (m 1 + m2) = 
= (2.82827 _+ 0.00004)Mo; m 2 = (1.386 + 0.003)MQ; rn 1 = (1.442 + 0.003)M o. 
The system period remained almost the same Pb ~ 27906.981 S. 

If -- to take in Taylor and Weisberg (1989) the largest value of e = 0.6171472 (the 
BT(I)  model in Taylor and Weisberg, 1989) - then the only tensor radiation gives the 
contribution into ,b b such as 

(Jbl,)(2),-~ - 2.40209 • 10 12s s -1 (40) 

and the scalar losses will lead to the additional contribution 

( ,hb) (o)~  -0.05303 x 10-12s s -1 (41) 

Now, at the precision to which the value ~h b (obs) is known in 1989, the contribution (41) 
( ~  2 .2~)  must be felt already. The total theoretical value of fib (an expected value 
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ibb for e from the BT(I) model in Taylor and Weisberg, 1989) turns out to be 

]'b(theor 1989) = ( - 2.45512 + 0.00021) x 10- 12 s s -  1 (41a) 

To make sure that the uncertainty to which the orbit eccentricity is known, is not so 

essential, nevertheless, as the precision of the determination of the system masses, we 
can adduce here the estimations of ~h b for another model from Taylor and Weisberg 

(1989), for the EH model with the least e = 0.617127 from those which are adduced by 

the authors in Taylor and Weisberg (1989). As a result we obtain 

(/bb)(2) = - 2.40167 X 10- 12 s s - 1 , 

(~h~)(o ) = - 0.05302 x 10-12 s S -  1 

Though, certainly, for used values m 1 and m 2 it would be more correct to choose the 
value of e corresponding to the D D G R  model from Taylor and Weisberg (1989). The 

total theoretical estimation is almost the same as in (41a): namely, 

Jbb(theor 1989) = ( - 2.45469 + 0.00021) x 10- 12 s s -  1 (42b) 

Note that the second figure after point did not change, and remained the same as in 

estimate (38) of 1979 with 'bad'  values of the masses. 

Thus, from the data published in 1989 the observational estimation of ~b b lies within 
the bounds ( +_ a): ibo (obs) = - (2.401 + 2.453) x 10- 12 s s -  1, and estimate (40) which 

does not take into account the scalar loss (the prediction of GR!)  turns out to be closer 
to the value -2.401 x 10-~2 and the theoretical estimate (41a) with a rather sure 

second (and third?) harmonic is closer to the value - 2.453 x 10- ~2 for/b b. Thus G R  

and G D  are now in the same situation (for the present) in the sense of accordance with 
the experiment. 

However, as a result of further data accumulation, the observational situation can 
become absolutely different to 1993. The comparison with data of 1979 (and later, see 

references by Taylor and Weisberg (1989)) leads to the fact that the increase of statistics 
must quickly reduce the uncertainty in the observed value of secular fall of orbit period. 

All other parameters of this remarkable system are known now already almost with the 

precision of celestial mechanics. Thus, in the nearest future there will be crucial or at 
least very solid argument in favour or against the scalar gravitational radiation. 

5. Conclusions 

As it was marked in Taylor and Weisberg (1989), in the bounds of G R  there is no 
possibility to explain the contribution into ~h b as large as 1 ~o of the value (33), determined 
by gravitational radiation. The authors mention the account for higher order in (v/c) (see 
Equation (20)), the transverse motion of the system, the Galaxy acceleration, the mass- 
energy loss caused by pulsar spin-down. If  all these possibilities change the value of/bb, 
then the account for them can strongly influence but third and next figures after point 
in the estimation of_P b (see, for example, Equation (40)). The difference (~Sibb) between 
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the observed and theoretical values of fib (estimated in Taylor and Weisberg (1989) by 
Equation (33)) which reaches the values of the order of 1~o, is used by Taylor and 

Weisberg for the obtaining of new limit of the value GIG = - bi~b/2Pb. For all this the 
theories of the Kaluza-Klein-type and superstring one are mentioned which predict the 

variation of fundamental coupling constants. 
In the last paper by Damour and Taylor (1991) dedicated to the binary pulsar 

PSR 1913 + 16 the value ~h b is obtained with account for new observational data. 
Using directly o b s e r v a t i o n a l  (J~b/Pb) ~  --87.39X 10 18S-~ and theoretical 
(]~b/Pb) GR = -- 86.0923 X 10- 18 S 1 values from Table I of this paper, it turns out that 
~h~'bs/,h~ n =  1.015. It means that the measured value ~h b is close to the value 

- 2.44 x 10 - 12 s s -- 1 Of course, the corrections to which the paper by Damour and 
Taylor is dedicated, are not allowed here for. But the same corrections were not allowed 
for in the previous paper by Taylor and Weisberg (1989) also, where the number 
~h~'bs/~b~ g = 1.010 _+ 0.011 was obtained. Our analysis of the results of the paper by 

Damour and Taylor (1991) with account for the same corrections but using only the 
results of 'old' observations published in the previous paper by Taylor and Weisberg 
(1989) does not exclude at least the fact that as the measurement precison of the value 
~/'b increases, the difference &hb =~bh~ _ ~b~n does not decreases indeed. Though, 

certainly, for more definite conclusion the measurement precision should be 2-3 times 

greater. 
Within limits of the gravitational interaction theory regarded as a total nonmetric 

model, accounting for the scalar gravitational radiation from the system PSR 1913 + 16 
we can try to predict an addition equal to 2% to the value ~h b from (33). Thus, (at least) 
the second figure after point in fib will be most probably 

~h b = - 2.45. . .  x 10- 12 s s 1 

Of course, this difference (if there it is) from GR prediction can as earlier be 
interpreted as a possible change of Newtonian constant (GIG ~ 10-11 y r -1 )  on the 
time scale of the Hubble expansion. But while treating with profound respect the 
contribution made by the GR, I maintain that it is still premature to ignore a possibility 
of one or more (alternative) explanations of observational results. Moreover, as no 
prediction of GR verifiable experimentally has not been refuted in GD (though here new 
consequences are admissed), ultimate debates and covert doubts on the occasion of the 
energy-momentum tensor of the gravitational field ought to be tried at least to solve 
experimentally, observing the effects involving strong and rapidly varying gravitational 
fields. 
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