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Abstract. Within the bounds of the general relativity and in gravidynamics, spherically-symmetric configu-

rations are considered with the limit equation of state (P = (ε - 4B)/3) and with the density increasing to the 

center. It is shown that unlike GR, where the existence of strange stars only is permissible (u-, d-, ί-quarks), in 

the consistent dynamic theory of gravitation the existence of stable configuration with ε ~ r -2 (quark star) is 

possible with a 'bag' out of quark-gluon plasma which includes all possible quark flavors (u, d, s, c, b, t, .. .). The 

total mass of such a compact object with the bag of the radius of ≈ 10 km (whose surface consists of the strange 

self-bound matter) must be ≈ 6-7 Mʘ. 

1. Introduction 

By the metric theory we mean here, first of all, general relativity (GR) and all versions of 

gravitational theories which proceed from Einstein's principle of equivalence. A project of 

theoretical model of gravitational interaction based on the consistent application of dynamic 

principles (gravidynamics) is presented in previous papers (Sokolov, 1990, 1991, 1992a, b, 

see also the references therein). In gravidynamics (GD) the law of equivalence of inertial and 

gravitational masses is certainly true, but here 'the principle of equivalence' is not used in any 

way which we consider, following Fock (1961), only a kinematical consequence of the 

fundamental law: mi = mj. Accordingly, in the consistent dynamic theory of gravitation the 

field is not reduced to the space-time metrics which, as in Maxwell's electrodynamics, can 

always be described by Minkovsky's metric tensor. 

In the suggested report we try to answer the question why in GR only quark con-

figurations, consisting of strange matter (u-, d-, s-quarks) - 'strange stars' - are permitted, 

while in GD quark-gluon plasma of analogous objects may consist of quarks of all possible 

types - 'quark stars' proper. As will be seen from the following, the peculiarities of GR and 

GD become most essential when we consider the utmost in-homogeneous quark 
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configurations in both theories. 

There are already many calculations of quark configurations (strange stars) within the 

bounds of GR (i.e., the calculations on the basis of Oppenheimer-Volkoff’s (OV) hydrostatics 

equations; cf. Haensel et al., 1986; Alcock et al., 1986; Benvenuto and Horvath, 1989; 

Krivoruchenko, 1987; Øvergård and Østgaard, 1991). The same calculations were carried out 

recently in the SAO of Russian AS. But unlike other groups, we were interested first of all in 

the way the modern (dynamic) theory of strong interactions - quantum chromodynamics 

(QCD) - 'works' in the conditions of the strongest gravitational field of a compact object with 

a mass of ≥ Mʘ. Up to now the corresponding observational information still does not exclude 

alternatives to GR. Ultimately, our basic purpose is a test of the gravitational interaction 

theory, elucidation of observational consequences and obtaining estimates allowing to 

compare GR and GD in a description of the same object - compact quark configuration. 

2. Utmost Inhomogeneous Quark Configurations in GR 

This section addresses the calculations of purely quark configurations described by the 

limiting equation of state 

PQ = 1/3 (ε - AB),                                                                    (1) 

where ε is the total energy density inside a huge quark bag, 4B/c2 = ρQGP is a macroscopic 

density on the surface (PQ = 0) of the bag consisting of the quark-gluon plasma (QGP). 

Equation (1) is the limit to which tends the corresponding total equation of state (Alcock et 

al., 1986; Haensel et al, 1986),describing the media consisting of quarks with masses tending 

to zero. Quark-gluon interactions stay in the lowest order in ac (i.e., 2αc/π should be 

sufficiently small so that it remains the first term of expansion in the expression for 

thermodynamic potential). Below, we speak about sufficiently cold (catalyzed) quark matter 

at temperatures not more than (for example) 1010 K when this matter is already a degenerate 

Fermi fluid. Thus in this paper the question is on a totally cooling down quark star when 

electrons are absent in the picture, and with no electrons, there is no corresponding neutrino 

flux. As a matter of fact, subject to the above remarks, we shall use here an asymptotic MIT 

bag model (Øvergård and Østgaard, 1991), where the bag constant B is a measure of 

confinement strength. 

Integration of equations of hydrostatic equilibrium (OV equations) gives, in particular, 

the relation between the mass and the radius of the compact object (Figure 1). Here the value 

B is chosen as B = 67 MeV fm-3. This corresponds to the macroscopic density on the surface 

(PQ = 0) of QGP-bag equal to ρQGP ≈ 1.7 ρnucl (ρnucl = 2.8x10 1 4  g cm-3). 
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Usually all calculations of this kind (see, for example, Haensel et al, 1986; or Alcock et 

al, 1986) are interrupted near point C in Figure 1. This corresponds to the OV limit for a 

compact object with the equation of state (1). All configurations lying to the left of point C 

turn out to be unstable with respect to small radial perturbations. Branch C-D in Figure 1 is 

closest to the black holes - 'permanently' unstable objects. Such an instability is described in 

many manuals on GR (Zel'dovich and Novikov, 1971; Shapiro and Teukolsky, 1983). 

In Figure 1 the dotted line shows the M/R connection for neutron stars. This connection is 

close to that given by Bethe-Johnson's equation of state. The same connection M/R at B = 67 

MeVfm-3 corresponds at first (i.e., for small masses ≤ 0.5 Mʘ) to neutron stars, and then to 

neutron stars with a growing (with further mass increase) quark nucleus, arising inside the 

compact object when its central density exceeds the value 4B/c2 (see, in detail, Haensel et al, 

1986). 

 

 

Fig. 1. The mass-radius relation for purely quark configurations with equation of state (1). The dotted line 

shows the M/R relation for neutron stars. Point C correspods to the OV-limit, point D indicates the positon of the 

utmost inhomogeneous quark configuration in GR. The Black Hole region is shaded (see the text), 
B = 67MeVfm-3. 

From Figure 1, it is seen that at the same mass, neutron stars are more extended, or less 

compact objects, than purely quark configurations, are calculated for limit equation of state 

(1). In GR only black holes with infinite gravitational red shift z can be more compact 

objects. Thus, if Equation (1) is really the limit of the equation of quark matter state at 

superhigh densities (>ρnucl), then it means that, in the bounds of GR, simply, there are no 

more compact hydrostatic equilibrium configurations than those shown in Figure 1. In this 
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sense, purely quark configurations corresponding to the curve AC in Figure 1 are the limit 

objects for GR. Here we can speak of hydrostatic equilibrium stable compact objects with the 

surface (z is a finite value) instead of the event horizon. 

But the basic difference between purely quark configurations and neutron stars, which is 

important for us to underline here, is the fact (and it is seen in Figure 1) that the quark matter 

or strange matter in GR is self-connected. Such an object is really a huge quark bag whose 

hydrostatics at small masses (A branch in Figure 1) is guaranteed only by strong (color) 

interaction. At M ≥Mʘ and at masses close to the OV limit the curve in Figure 1 'turns' to 

black holes due to GR effects. 

Hydrostatic calculations with the use of OV equations give the following dependence on 

the value of B for the maximum mass of purely quark configurations 

1/ 23
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The analogous formula for the OV limit was obtained by Haensel et al. (1986) as a result 

of numerical calculations including the equation of state (1). From this paper and also from 

the calculation by Alcock et al. (1986) it follows that the basic parameter which determines 

the value of masses and radii of such dense (> ρnucl) and compact objects - quark 

configurations - is the value B. Our calculations have confirmed the conclusion that the 

crucial factor is the choice of the macroscopic density value ρQGP > ρnucl at the surface of the 

QGP-bag. 

In other words, equation of state (1), in which quarks are considered in the limit as almost 

free noninteracting massless particles at the calculation of the hydrostatics of objects with 

such high densities, gives approximately the same values of the 'observed' parameters as the 

equation of state does, allowing for a finite value of the constant of colour interaction and 

nonzero mass of s-quark. As it will be seen from the following, this circumstance can be 

directly interpreted in the bounds of consequences of QCD and macroscopic properties of 

QGP. 

The choice of 4B/c2 density on the surface (PQ = 0) of the macroscopic quark bag can be 

determined from the following reasons. 

The upper value of the constant B is determined by the condition of the self-connection of 

quark (strange) matter at zero pressure P, formulated by Witten (1984). This condition 

demands that the corresponding energy per baryon at P = 0 should be less than energy per 

baryon for the most stable non-strange matter - crystal iron: i.e., 
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Hence, for the B constant, we obtain that B ≤ 91.5 MeV fm-3, or for macroscopic density 

of plasma on the surface of the QGP-bag, we obtain ρQGP ≤ 2.3 ρnucl. It means that at a big leap 

of density on the bag surface some hadron configuration would be energetically more 

preferable than QGP. 

The lower value of B is determined by the fact that with decreasing dimensions and mass 

of the bag (A branch in Figure 1) we shall come ultimately to a model of bags (MIT) or to a 

'macroscopic' configuration with baryon number A ≈ 100 (consisting mostly of u- and d-

quarks?). Thus, the masses of macroscopic quark configurations must be connected with 

hadrons mass spectra by the (semi-empiric) relation (Chodos et al., 1974) 

B ≥  BMIT = 0.13 | εV | ≈ 67MeVfm-3,                                                (4) 

where | εV | is the energy density of QCD-vacuum equal to ≈ 0.5 GeV fm-3 (Novikov et al., 

1981). 

Thus the density at the surface of the macroscopic quark bag is somewhere within the 

limits 

2.3ρnucl ≥ ρQGP(PQ = 0) ≥ 1.7ρnuol. (5) 

Accordingly, maximum mass of purely quark configuration must be in the limits 1.58 

Mʘ ≤ Mmax(C) ≤ 1.85 Mʘ. This is another consequence of the calculations of the kind 

(Haensel etal, 1986; Øvergård and Østgaard, 1991): namely, the application of the modern 

phenomenology of strong interactions reduces considerably the value of the OV-limit. In the 

old phenomenology with Yukawa's potential and the exchange of vector mesons, where the 

equation of the type of P = ε is used as a limit equation of state at ε/c2 ≥ρnucl, the 

corresponding value of the OV-limit is more than 3 Mʘ (Rhoad-es and Rumni, 1974; Shapiro 

and Teukolsky, 1983). 

To understand why, in GR, only strange stars are possible it is necessary to apply to the 

profiles of (energy) density the corresponding hydrostatically balanced quark configurations. 

In Figure 2 the behaviour of (energy) density is shown inside the quark bag as dependent on 

the distance from the center of a spherically-symmetric configuration. This density profile 

corresponds on the OV-limit - i.e., this is ε(r)/c2 for the last stable hydrostatically balanced 

configuration which can exist in nature, if the equation of state (1) for QGP is true and, of 

course, if GR is true. Thus, GR, together with the limit equation of state (1), imposes the 

limitation on the maximum achievable density QGP (density in the center): 
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ρ ≤ ρGR ≈ 10 ρnucl ≈  28 x 1014 g cm-3                                             (6) 

and, consequently, on numerical value of the OV-limit. 

 

Fig. 2.    (Energy)  density   profile   for   the   last   stable   (OV-limit)   spherically-symmetric   

configuration corresponding to point C in Figure 1. The distance r from the center of QGP-bag is measured in 

km, total 
density in g cm-3, B = 67 MeV fm -3. 

 

All other stable configurations on the basis of Equation (1), lying to the right of point C, 

are even more homogeneous. In the limit, as was mentioned above, at r → 0 (branch A in 

Figure 1) we deal ultimately with the model of MIT-bag with an absolutely homogeneous 

profile ε(r) at baryon number A ≈ 100. We emphasize here once more that purely quark 

configurations, corresponding to points on the curve from A to C in Figure 1, are the most 

homogeneous ones from possible stable compact configurations corresponding to OV-

equations (Alcock et al., 1986). 

After all, we can calculate the profile ε(r)/c2 of the utmost inhomogeneous hydrostat-

ically balanced configuration corresponding to point D in Figure 1. This profile is shown in 

Figure 3. The density in the center of such an object tends to infinity and falls, with r 

increase, very close to a law 

ε(r) ~ r-2 . 

But such configurations, according to GR, are never realized in nature since they are 

mostly unstable with respect to small radial perturbations (Zel'dovich and Novikov, 1971) and 
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during the time of the order of R/c they must collapse into black holes. But nevertheless we 

consider the situation in more detail, since it is such a configuration (forbidden in GR with a 

big 'margin') which can be realized as a stable stationary state in the bounds of the dynamic 

alternative to GR - in gravidynamics. 

 

Fig. 3.    (Energy) density profile for the utmost inhomogeneous hydrostatically-balanced configuration 

with equation of QGP state (1) calculated in the bounds of GR. The density on the QGP-bag surface is taken to 
be equal to ρQGP = 1.7 ρnucl (B = 67 MeV fm -3)· 

For macroscopic density at the bag surface, in accordance with conditions (5), we choose 

for definiteness some average value 

 ρQGP(PQ = 0) = 2ρnucl ≈ 5.6 x 1014 g cm-3.                                         (7) 

In accordance with QCD (the theory of colour interactions) and also in accordance with 

what is known about expected properties of QGP (Emel'yanov et al., 1990; Collins and Perry, 

1975), it can be considered that the bag surface consists mainly of the lightest u- and d-quarks 

which come first in the state of deconfinement at such a gigantic macroscopic density. It can 

be interpreted (analogously to usual plasma) that the free path length l (relative to color 

interactions) of u- and d-quarks in such a plasma with ρ ≥ ρQGP  becomes either equal or even 

much greater than lc ≈ 1 fm; lc being the characteristic radius of strong interaction or the 

radius of confinement. In the end, l can simply become a macroscopic value comparable with 

the bag dimension. These are just the quarks for which at ρ ≈ ρQGP the equation of gas state of 

asymptotically free quarks (1) turns out to be true, since for them we can assign mu ≈ md → 0 
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(at such characteristic transmissions of momentum in QGP which correspond to particle 

interactions in such dense matter). 

A heavier s-quark (ms ≈ 200 MeV) at ρ ≥ ρQGP exists in plasma as heavy 'admixture' 

as a result of equilibrium reactions of the type 

u + d ↔ u + s 

(see the review by Haensel, 1987). Color interaction of this ('more non-relativistic', than u and 

d) quark is still rather strong (αс > 0.45) at ρ ≈ ρQGP and that is why the s-quarks must have 

smaller mean-free-path in QGP than 'massless' u- and d-quarks. 

So one can say that a heavier s-quark arising at weak interactions at ρ ≈ ρQGP is still 

mainly in the volume of the confinement l3
c ≈ 1 fm3. Density boundary over which the 

deconfinement or almost total 'defreezing' of s-quark occurs is rather close to ρQGP. The 

'defreezing' of j-quark occurs when the macroscopic density becomes greater than 

  ρ ≡ ρQGP + msc2/l3c ≈ 9.1 x 1014 g cm-3,                                          (8) 

in accordance with the interpretation of chemical potential, as the change of energy density at 

the unit change of concentration of particles of a given kind. In other words, at ρ > ρs, in 

every 'cell' of ≈ 1 fm3 volume, there is already more than one s-quark and it becomes just as 

'tight' for them as it was at ρ ≥ ρQGP for u- and d-quarks. Yhen the colour interaction of s-

quarks must become weaker (αс <0.45). Accordingly, at QGP densities greater than ρs, s-

quarks also can be considered relativistic (ms → 0). 

As a matter of fact, the confirmation of such a logic of'defreezing' of s- (and heavier) 

quarks is the fact noted in the quoted paper by Haensel et al. (1986) and mentioned before: 

namely, that the determining parameter of the equation of state for QGP is the value B or the 

density value at which QGP is formed. The direct calculation of the hydrostatically balanced 

configuration with the limit equation of state (1), not only reproduces the results of that paper, 

where the authors, besides the B, allow also for αc = 0.45 and msc2 = 200 MeV, but varying 

4B/c2 value in (1), one can reproduce, with an acceptable precision, almost all the results of 

calculations by Benvenuto and Horvath (1989) with other parameters αc and ms. Hence, we 

conclude that indeed the densities ρQGP and ρs (at which ί-quark can also be considered a free 

massless particle) must be close ρQGP ~ ρs. I.e., Equation (1) can actually be applied without 

paying attention to the essential difference in masses between u-, d-, and s-quarks. 

Or, in other words, the following interpretation of the results of all the mentioned 

calculations is possible. At ρQGP ≤ ρ ≤ ρs , the heavier quark is present in QGP as a 'heavy 

admixture' and does not distort strongly the limit equation (1). At ρ > ρs heavy quarks, as well 
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as lighter ones, are also in the state of deconfinement and so here Equation (1) becomes 

applicable again. 

From what is said above, it becomes clear why in GR only strange stars are possible. As 

has been noted, the last stable hydrostatically-balanced configuration (see Figure 2) imposes 

limitation on density (6). Only then can one speak of strange stars, following the same logic, 

the deconfinement ('defreezing') of even heavier c-quark (mcc2 =1.4 GeV) must occur at 

densities greater than the limit density ρGR. In every 'cell' of l3
c volume there can be at least 

one c-quark if the macroscopic density turns greater than 

  ρc ≡ ρs + msc2/l3c ≈ 33.9 x 1014g cm-3.                                           (9) 

In that case the color interaction becomes so weak that the corresponding αc becomes 

even less. Therefore, one can consider for c-quark, that mc → 0. Of course, for the 

configuration in Figure 2, which is still attainable in GR, some admixture of c-quarks can 

appear in plasma near the center as a result of some (d + u → d + c) weak processes 

analogously with the admixture of s-quarks at ρ < ρs. 

Returning to the utmost inhomogeneous configuration with the density profile in Figure 

3, at ρ > ρs in plasma there must be a lot of relativistic charmed quarks (mc → 0) and like the 

case of s-quark the properties of QGP are described ultimately by limit equation (1). But all 

the configurations with the density in the center greater than pc, as well as the utmost 

inhomogeneous configuration, are to the left of the OV limit in M/R curve (point C in Figure 

1). Hence, if GR remains true even in such a strong gravitational field then in nature there 

exist only strange stars as maximum compact stationary objects with the surface (i.e., with a 

finite z) but not with the event horizon. ('Charmed stars' do not exist in GR.) The utmost 

inhomogeneous configuration (point D in Figure 1) in which all quark generations would be 

'defrozen' is not realized either, according to GR – it is 'eaten up' by black holes. 

By reasoning of this section, we tried to make more concrete analogous speculations 

expressed by Alcock et al. (1986), in connection with their use of the same equation of state, 

independent of the number of particle flavors. Since if instead of the full expressions we use 

their limit (1), then, strictly speaking, everything that is said about quark masses, quark 

flavors, chemical potentials, number density of different flavors of quarks, density (ρ) at 

which 'the appearance' of the next flavor occurs and even the use of some finite value αc , is 

now only interpretation in the bounds of perturbation QCD. The results of calculation of 

hydrostatically equilibrium configurations are determined in the end only by the value 4B/c2 

or the energy density at which the limit (1) can be used. 

Certainly, one should try to understand why the results of such calculations differ in less 
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than 4% from the results of calculations with the help of full expressions. That is why where 

we use the notion of 'defreezing' of the next flavor, meaning first of all the fact that for this 

'new' flavor, at the given density, the condition l > lc begins to be fulfilled. 

Besides, in so-called 'full expressions' the used values of quark masses and the value of αc 

are fixed. At the same time it is known that quark masses are measured at definite effective 

transferred momentum Q. Numerical values which are usually used concern the distances 

between the quarks of the order of 10 -14 cm, that in our case means a definite macroscopic 

density ρ. The less the distance between interacting quarks, i.e., the greater macroscopic 

density, the less quark masses can be. But this simply means that there must exist a 

dependence of αc on ρ (more details will be in the next section). In other words, 

mq(αc) = mq[αc(ρ)] = mq(ρ); 

and then at calculations of hydrostatically equilibrium configurations only macroscopic 

density ρ ≥ 4B/c2 becomes really the basic parameter. 

Then even in the case of the limit (1) it is not absolutely necessary to require that, for all 

ρ's, te fulfillment of the equality αc = 0. For u- and d-quarks defreezed at ρ >4B/c2 at a given 

p, we can put mu,d(ρ)→0, then αc(ρ)≠0. To have a possibility to use the perturbation theory the 

value αc(2αc/π<1) must be sufficiently small. At densities ρ < ρs (8), the heavier quark s is 

present in plasma, but for it l is still rather small (l≤lc) for its contribution into pressure could 

change the equation of state essentially. At densities ρ > ρs in the full equations besides 

decrease of αc(ρ), the value ms may also tend to zero, that leads in turn to the disappearance of 

corresponding ('massive') terms in the full expressions. In the end we shall be even closer to 

the limit (1). 

All this reasoning could be illustrated by corresponding calculations, but the matter is 

that nobody know today the precise form of the dependence of αc(ρ) and mq(ρ) and we can 

only guess (see the next section) how αc will behave at high and superhigh (ρ >> ρnucl) 

macroscopic densities. However, it may be the essence of differences between quark 

configuration calculation results in the bounds of asymptotic MIT bag model, i.e., with the 

help of Equation (1), and ones in the bounds of the Perturbative QCD model (Øvergård and 

Østgaard, 1991). 

In conclusion of this section which has been dedicated to the pure quark configurations in 

GR. We emphasize once more that the compact object consisting of strange matter with the 

equation of state very close to (1) is the last opportunity of stable state after which only black 

holes with z →∞ follow. 
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3. Quark-Gluon Plasma in Gravidynamics 

'Quark stars', considered here as objects consisting of QGP including all possible flavors 

(u, d, s, c, b, t,...) of quarks, turn out to be unstable in GR. One can say that such objects must 

not exist in nature according to all versions of GR as well in which there are 'frozen stars'. 

A 'quark star' as a limiting (in several senses) stable object with the total mass MQ with 

the QGP-bag surface (z ≠ ∞) of the radius of RQOP≡GMQ/c2 (inside the Schwartzschild sphere 

according to GR) can exist if we adhere to the dynamic, totally non-metric description of 

gravitational interaction. 

In gravidynamics - GD (unlike geometrodynamics: GR) - the profile of the total (energy) 

density ε(r)/c2 of analogous quark configuration does not terminate in a vacuum (see Figure 

4). Around the macroscopic quark bag (QGP-bag) a fur-coat exists - the 'gas' of virtual 

gravitons whose energy density has to be allowed for in the equation of state. 

Here the total mass MQ of the object entering the determination of RQGP ≡ GMQ/c2 should 

be found in 'long-wave limit' (like classic charge of electron); i.e., at r >> RQGP  or, in other 

words, the mass is determined by Newtonian rules. If 

 

Fig. 4. Density profile for a quark star in GD (solid line). Fat rectangle shows 'the background' created by 

gluons (see the text) distributed homogeneously (?) in the bag with RQGP ≈ 10 km. 'Vacuum' around the bag is 

filled by a 'gas' of virtual gravitons (the fur-coat) with energy density θ00(r). The densities are indicates at which 

'the defreezing' of s, c,b,t, ... quarks occurs. The arrow indicates the density at which the perturbative QCD 

vacuum must be totally restored (αcm ≈ 0.7). The dotted line represents the density profile of analogous quark 

configuration in GR for 4B: c2 = 2ρnucl (B = 78.5 MeV fm -3). 
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the object is described by 4-potential (4) from the paper by Sokolov (1992b) with the radius 

of the bag R = RQGP, then MQ consists by half on the 'coat' mass. Thus for the total energy 

MQc2 of the quark star in GD one can write 

½ MQc2 (the bag with R = RQGP) + ½ MQc2 (the 'coat' in vacuum) = MQc2 . 

Thus, the mass of the whole configuration is determined by integration from its center (r 

= 0) and up to r = ∞o. (This is an essential difference from the definition of mass in GR.) 

Strictly speaking, this is the determination of mass of any objects in GD. By force of this fact 

in GD there is no event horizon that is ultimately the result of total refusal of geometric 

phenomenology constituting the base of GR. The bag surface can undergo some unselected 

sphere r = 2GMQ/c2 as a result of the relativistic collapse, but the whole gravitating object, 

including its gravitational 'atmosphere' (or coat), can never be found under this 'horizon'. 

For the object, with limit achievable parameters, which a cold quark star if RQGP = 

2GMQ/c2 ≈ 10 km seems to be in GD, the equation of state inside and outside the bag is the 

same: i.e., 

P= 1/3 ε.                                                        (10) 

Inside the bag the total pressure is a sum of two ('partial') pressures. First of all it is the 

pressure 

PQ = 1/3 (ε – 4B). 

Strictly speaking, this formula gives the pressure of degenerate Fermi-gas of free and 

massless quarks. Then the contribution of gluons (with some admixture of gravitons?) in the 

limit under investigation is determined by the equation 

PG = 1/3 (4B).                                                            (11) 

Hereafter, we shall proceed from the assumption which is apparently true in the case of 

huge (ρ >> ρnucl) macroscopic densities in question. We consider that gluons which are 

almost free and almost non-interacting with each other (at the total density increasing to the 

center) can be distributed inside the bag with constant and positive density 4B. The 

interaction of gluons becomes essential far from the center, maybe even near the very 'wall' 

of the macroscopic bag, where (as a result of that) the energy-momentum tensor trace of 

massless gluon field becomes non-zero... We do not know so far at what distance from the 

bag wall it will occur, that is why we choose here 'the simplest' limit case (11). 

As a result of it, in the sphere r = RQGP  the sum of pressures is equal to (10). The total 

energy density in the bag with RQGP ≈ 10 km decreases from the center according to the 
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equation 

2 2
2

4( ) QGP
Br R r

c
                                                                   (12) 

(Sokolov, 1991, 1992b), if the equation of state inside the bag is taken in form (1). The QGP-

bag in GD turns out to be connected only by colour forces ('wall' of bag), the gravitation 

inside the bag is 'switched off for such a limiting object which the quark star is. It can be 

assumed that in GD, in that case, QGP is in a totally (at R = RQGP) stress-free, self-bound 

state when there are no forces binding the bag besides colour ones. Then the distribution e(r) 

is here maximum inhomogeneous. It differs radically from an analogous case in GR at totally 

homogeneous distribution of density (dε/dr→0) when M→0 also.  

Outside the bag (in 'vacuum') 'a gas' still remains from virtual gravitons with the same 

equation of state (10). Positive energy density ε ≡ θ00(τ) of the gravitational field falls here from 

the value 45 (at the boundary of the two 'mediums': QGP - 'vacuum') according to the law 

00 4 4
2

4( ) QGP
Br R r

c
   ,                                                  (13) 

which is connected with the fact that at distances r ≥ GMQ/c2 the self-action of gravitons 

arises (scalar and tensor gravitons, tensor and tensor ones; see Sokolov, 1990, 1991, 1992b). 

Of course, it is not excluded that in QCD-theory which would be more correct than the 

bags model, the contribution of quarks and gluons in the total energy density (12) inside the 

QGP-bag could be distributed in an absolutely different manner than we assume here. But 

(most probable) these are such contributions of fermion and boson components at the huge 

(ε/c2 >> ρnucl) density which increases towards the center (ε ~ r -2), that as a result only such 

limit equation of state (10) conforming to the rest of physics turn out to be true. 

Strictly speaking, from the very beginning, the question in (1) was only on quarks since 

here there is no explicit contribution into pressure which corresponds to gluons. To make sure 

of that it is sufficient to look at the full equation of state (Alcock et al., 1986) before the pass 

to the limit (1). Thus, in the case of quark configurations in GR one cannot say about QGP: in 

such a plasma there are simply no gluons, if using the limit equation (1) as the equation of 

state. In GD we do deal with QGP since in GD we try to account explicitly for the 

contribution of bosons, at least in the case of asymptotically free gluons with the equation of 

state (11). The last can be justified apparently only in the case of macroscopic density of QGP 

(12) increasing to the center, when the 'constant' of color interaction decreases sufficiently 

quickly with the increase of ε from the wall of the bag towards its center. Below, in this 

section, it will be said that it is possible, in principle, at such a profile of ε(r) as (12). 
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To obtain the total (observable) mass of such a quark configuration (unlike what was in 

GR) at the integration of ε/c2 it is necessary to allow for the energy θ00 of the gravitational 

field itself. As a result, the mass of a quark star in GD can be expressed in terms of the energy 

density value at the boundary between QGP and 'vacuum' as 

1/ 2

2

26.64
4 /

nucl
QM M

B c
   

 
 ;                                                      (14) 

and the same restrictions (5), which were mentioned above, fix the mass and the radius of the 

cold quark star in GD in the limits 

6.21 Mʘ ≤ MQ ≤ 7.25 Mʘ ,        9.16 km ≤  RQGP ≤ 10.69 km . (15) 

The lowest value of the total mass of the configuration and, accordingly, the lowest value 

of the QGP bag radius (as was said above) follow from the condition that at the density (12) 

on the bag surface equals ε/c2 ≈ 2.3 ρnucl (3,5). This surface consists from strange self-

connected (i.e., stable at PQ = 0) matter. Since ε increases towards the center of the bag and, 

consequently, all other kinds of quarks become defrozen, then in GD (unlike what was in GR) 

it is necessary to speak not about a strange star, but about a cold quark star with the strange 

surface, if the density on this surface does not exceed ≈2.3pnucl. 

If we assume that some other conditions of the type of (3) are possible but at PQ ≠ 0, 

when at bigger densities on the QGP surface, already more massive quarks than s-quark 

become 'defrozen', then according to (14) the masses of corresponding meta-stable quark 

configurations will be less than 6Mʘ down to the values Mʘ → 1.4 Mʘ. But in any case, 

Witten's condition (3) at PQ = 0 fixes some maximum mass ( > 6 Mʘ) of the most stable limit 

quark configuration in GD. Whether such a limit object can exist allowing for astrophysical 

reasons is another question. But such a limit can be a consequence in principle of GD and 

QCD, if GD gives a more or less correct description of the strong gravitation. 

Thus, as follows from a brief review of properties of compact objects, collapsars 

(Sokolov, 1991) - from masses and radii of such objects in binary systems such as Cyg X-l, 

A0620-00, LMC X-l, LMC X-3 - can readily be considered as 'candidates' into quark stars of 

GD with the strange surface. Some properties of the quark star which could lead to 

corresponding observational manifestations are discussed in more detail in the quoted review. 

But apparently, the basic observational consequence confirming the version of GD u QCD 

suggested here could be indeed the existence of a selected mass value of collapsars (or 

candidate into black holes) ≈ 6 - 7 Mʘ (15). Since in GR there is not preferable mass values of 

black holes for all masses of 'candidates' greater than OV-limit, then one will have to invent 

some astrophysical (e.g., evolutionary) arguments explaining the mass of a 'typical' collapsar 
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in these close binary systems. 

In what follows, we shall try to imagine how the 'running' constant αc of the strong 

interaction could depend on the parameters of the QGP bag under consideration. And, most 

importantly, what could be the dependence of this value on macroscopic density so that we 

could make at least the rough agreement between the asymptotic MIT bag model and the 

interpretation of results with the help of the perturbative QCD which we mention here rather 

often? 

In Figure 4 we marked macroscopic densities above which the corresponding quarks are 

already in the state of deconfinement. The total density ε(r) increases deep into the bag and, 

consequently at the approach to its center the quarks become compressed still tighter. In other 

words, when the macroscopic density exceeds a certain level, the corresponding quarks are 

situated relative to each other and interact with each other at distances Δl less than l ≈ 10-13 

cm. The same can be said about any particle of QGP. In particular, the known formula for the 

'running' constant αc of color interaction can be written in the form 

2
2 2

12( )
(33 2 ) ln( / )c

f c

l
n l l

  
 

 ,                                          (16) 

where nf is the number of 'defrozen' quark flavors; lc, the radius of confinement; and Δl, the 

distance between two neighbouring strongly-interacting colour particles (Δl ≠l; l being the 

free-path length of quarks in QGP which can be much greater than lc). 

For example, if one demands that u- or d-quarks (nf = 2) could be considered almost free 

(αс ≈ 0.45, see Haensel et al., 1986), it is necessary that the mean distances Δl, to which the 

quarks must be 'compressed' in such QGP would be about 0.25lc ~ 10-14 cm. One may think 

(see the previous section) that these are just the conditions (Δl < lc , αc < 1) that are realized in 

plasma first for u- and d-quarks at the macroscopic densityρ ≡ ε/c2, greater than the density at 

the boundary of the QGP-bag (i.e., greater than the density of phase transition in the QGP 

state). 

If we apply the idea of coupling constants depending on density (which is widely used in 

'standard' cosmology of Big Bang for our case of macroscopic bag) one can try to 

parameterize the macroscopic constant of strong interaction by the equation 

2

12( )
(33 2 ) ln( / 4 / )cm

fn B c
 





  .                                                 (17) 

We emphasize here that p is macroscopic and, therefore, a certain mean density which 

does not exclude that microscopic fluctuation of density in volumes of ~ (Δl)3 can, generally 

speaking, exceed p dozens of times. In particular, if we remember here the attempts of getting 
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'hot' QGP on colliders in volumes of the order of several fm3, then the corresponding 

macroscopic density (here the macroscopic volumes of averaging ~ 1 cm3 are also meant) will 

be simply zero. In that case there is no question about any gravitational effects which become 

essential only at big macroscopic masses. Here we mean cold catalyzed self-connected matter 

which must be the source of the gravitational field. 

On the other hand, the strong interaction which is realized here in big (macroscopic) 

volumes has evidently the character of macroscopic color interaction, something like 'color 

gravitation' inside a huge self-connected QPG-bag. Formula (17) could describe just such a 

macroscopic interaction, when the exchange by gluons between the elements of volume 

inside such a bag, situated at macroscopic distances relative to each other, becomes essential. 

Thus here, in our case, it is necessary to speak already about QGP in astrophysical 

conditions which differ considerably from corresponding conditions available in experiments 

on the Earth. 

Of course, formula (17) can be considered still only as an attempt of some rude 

extrapolation in the region of superhigh (ρ >> ρnucl) densities. In particular, the calculation of 

Δl - mean distance between quarks at a given ρ>4B/c2, the mean free-path 1 and also other 

parameters of QGP will demand further study of microscopic properties of such plasma as it 

is made for ordinary plasma. Here we are to meet the same problems that exist in QCD and in 

quark bag models (in particular). Especially since the notion of the macroscopic QGP-bag can 

be used directly at ρ ~ r -2. Really, by use of formula (12), the macroscopic constant αcm of 

colour interaction (of macroscopic volume elements situated at macroscopic distances from 

each other) inside the QGP-bag can be expressed in terms of r - the distance from the bag 

center – as 

2
2 2

12( )
(33 2 ) ln( / )cm

f QGP

r
n R r

 


  .                                                  (18) 

Then, the color confinement in the gigantic bag of RQGP radius is provided here in the 

same way as it was in the model of the homogeneous (in density) MIT-bag with the 'radius' lc 

in formula (16). In particular, the values αc and αcm must be in approximately the same relation 

as the value | εv | - the energy density of QCD-vacuum (obtained from the analysis of sum 

laws) and the value of the constant ΒΜΐτ (which is connected with hadron mass spectrum). It 

naturally follows from the fact that in (17) we actually use directly the model of quark bags. 

If, finally, some definite value of density at the boundary of the QGP-bag in accordance 

with the restrictions (5) is chosen, then in evaluation of value acm one can use the equation 
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12( )
(33 2 ) ln( / 2 )cm

f nucln
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


 .                                              (19) 

Equations (18) and (19) should be considered here only as an attempt to make the 

interpretation by means of perturbative QCD, to which we resorted in this and previous 

sections, agree with the asymptotic MIT bag model. Of course, such equations can be an 

approximation as the 'initial' approximated equation (16) itself. The most probable, the more 

precise dependence acm(ρ), will lead to an even more quick decrease of color forces in the 

direction from the bag wall towards its center. In the end we shall have to use only limit (1) 

for the cold, catalyzed QGP. It may be, at this limit, the difference between MIT-bag and 

QCD approaches will decrease or disappear altogether. We can, therefore, speak already 

about a classical limit of QCD inside the macroscopic bag. 

But one way or another, at consideration of macroscopic QGP (i.e., QGP in astro-

physical conditions) and the use of QCD, an absolutely definite dependence for ac(ρ) or 

acm(ρ) will be needed for sure. Below we show by corresponding estimations the fact that the 

approximate formulae (19) suggested above does not contradict considerably to 'the 

standards' of QCD. 

If we consider that the perturbative vacuum is restored at such macroscopic densities 

ρQCD that the relation of ρQCD to the density on the bag border is the same as the relation (4) 

between | εv | and BMIT, 

14 32
2 43.07 10

0.13
V nucl

QCD nucl
MIT

g cm
B
 

                                    (20) 

(when four kinds of quarks are defrozen, see Figure 4), then Equation (19) yields αcm ≈  0.74 

at ρ = ρQCD. It is close indeed to the QCD-value αQCD
c (1 GeV) = 0.7. At the same time, for 

strange matter (nf= 3) at macroscopic densities, when ρ  ≈ 1515 g cm-3 < ρQCD, the macroscopic 

constant of colour interaction turns out to be equal to αcm ≈ 2.4. It is close to the value of αMIT
c 

= 2.2 determining the mass splitting of hadron multiplets (Bogolyubov, 1968; De Grand et al., 

1975). 

Thus both formulae (19), and from estimation (20), it follows that the QCD-vacuum 

(perturbative vacuum) in strange matter is not restored yet (αcm ≈ 0.87), which agrees with 

calculations in the bounds of GR carried out by Kondratyuk et al. (1990). As follows from 

Figure 4 and formulae (19), (20) the perturbative vacuum is totally restored in the interior of a 

QPG-bag of a quark star in GD at the depth RQGP – r ≈ 7 km, i.e., in the case of the most 

stable (limit) quark configuration with the bag whose surface consists of strange matter. 
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4.   Conclusions 

From formula (19) it follows, in particular, that in the very center of the QGP-bag with 

RQGP ≈ 10 km (i.e., for r = 10-13 cm), the macroscopic constant of color forces is only about 3 

constants of electromagnetic interaction. The density p here must be about 5.4 x 1052 g cm-3, 

and the mass (in r = 1 fm sphere) must equal 7 x 1014 g. Of course, at mutual distances 

between QGP particles much less than lc (10-17 cm) and, correspondingly, at densities >> 1016 

g cm-3 the constants of all the three fundamental interactions (strong, weak, and 

electromagnetic) must in the end become indistinguishable from each other. 

Thus, in the interiors of a GD quark star - a stationary stable object with density 

increasing to the center according to the law ε(r)~r -2 - just the physical conditions can be 

realized under which all the interactions unite in one fundamental interaction. For sure, the 

constants of weak and electromagnetic interactions inside the QGP-bag of the quark star can 

be also expressed in terms of macroscopic densities. And it means that the ideas of Grand 

Unification of all interactions could be tested without resorting to cosmology of Big Bang, but 

studying the same physics of superhigh densities (or 'cosmomicrophysics'), observing 

compact objects (bright X-sources, γ-ray bursts, remnants of supernova explosions, etc.) of 

stellar masses. 

Of course, it should be admitted here that GR describes erroneously the strong 

gravitational field of such objects. But ultimately, if we abandon the conviction {a priori) of 

absolute correctness of GR and do not forget that only a sufficiently complete experimental 

(observational) study of strong gravitational fields can affirm or refute this conviction, then all 

the preceding discussion can be considered as a possible alternative to black holes of GR. 

We recognize that sometimes statements of certain things look schematic here. The 

matter is that many QGP properties and QGP itself is only a hypothesis, although a hypothesis 

which follows naturally from the experiments on colliders and from the theory of quarks and 

leptons. But even now from all what has been said, it is clear that a consistent direct 

allowance for localizable positive (like in the case of all other gauge fields) energy of 

gravitational field changes completely the collapsar physics. In particular, one of the 

observational (experimental) arguments in favour of such or similar physics would be the 

existence of some selected value for the collapsar mass (or for 'the candidates in black holes' 

of GR). Proceeding from the theoretical scheme developed here, we consider that the 

collapsar - a compact object with its mass exceeding, certainly, the pulsar mass (or OV-limit 

in GR) - can be identified with the (limit) cold quark configuration in GD whose mass is 6.2-

7.2Mʘ. 
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