Novel astrochemical aspects of cyanoacetylene-related molecules

R. KOŁOS^{1,2}, M. GRONOWSKI¹ & M. TUROWSKI¹

1) Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 2) Faculty of Mathematics and Natural Sciences, Cardinal S. Wyszynski University, Warsaw

C. CREPIN, S. DOUIN, & S. BOYE-PERONNE

Laboratoire de Photophysique Moléculaire du CNRS, Université Paris 11, Orsay

Focus on:

- 1. Cyanovinylidene, the branched izomer of H-CC-CN
- 2. Cyanoacetylide, the anion produced from H-CC-CN

INTERSTELLAR MOLECULES

2	3	4	5	6	7	8	9	10	11	12	13
H ₂	C ₂ H	c-C₃H	C ₅	C₅H	C ₆ H	CH ₂ C ₃ N	HC ₇ N	CH₃C₅N?	HC ₉ N	C ₆ H ₆	HC ₁₁ N
AIF	C ₂ O	I-C₃H	C₄H	$I-H_2C_4$	CH₂CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH2) ₂ CO			
AICI	C ₂ S	C ₃ N	C ₄ Si	C_2H_4	CH₃C₂H	CH ₂ COOH?	(CH ₂) ₂ O	NH ₂ CH ₂ COOH?			
C ₂	CH ₂	C ₃ O	$I-C_3H_2$	CH₃CN	HC₅N	C ₇ H	CH ₃ CH ₂ OH				
СН	HCN	C₃S	c-C ₃ H ₂	CH₃NC	HCOCH ₃	CH ₂ OHCHO	CH_3C_4H				
CH+	HCO	CH ₂ D+?	CH ₂ CN	CH₃OH	NH ₂ CH ₃	HC ₆ H	C ₈ H				
CN	HCO+	HCCN	CH_4	CH₃SH	c-C₂H₄O						
CO	HCS+	HCNH+	HC₃N	HC₃NH+	CH ₂ CHOH						
CO+	HOC+	HNCO	HC ₂ NC	HC ₂ CHO		_					
CP	H ₂ O	HNCS	HCOOH	NH ₂ CHO							
CSi	H_2S	HOCO+	H ₂ CNH	HC₄H							
HCI	HNC	H ₂ CO	H_2C_2O								
KCI	HNO	H ₂ CN	H ₂ NCN								
NH	MgCN	H ₂ CS	HNC₃								
NO+	MgNC	H ₃ O+	SiH ₄								
NS	N ₂ H+	NH₃	H₂COH⁺								
NaCl	N ₂ O	SiC ₃									
OH	NaCN	HC₂H									
PN	OCS										
SO	SO ₂										
SO+	c-SiC ₂										
SiN	CO_2										
SiO	NH ₂										
SIS	SICN										
	H_3+	4									
	AINC	J									
FeO											

HCN HNC

H-CEC-C=N

izonitrile

:C=C=C=N-H

imine

J. Cernicharo, M. Guelin , and C. Kahane; Astron. Astrophys. Suppl. Ser. 142, (2000) 181

R Cernicharo, J., Heras, A.M., Tielens, A.G.G.M., Pardo, J.R., Herpin, F., Guélin, M., and Waters, L.B.F.M.; 2001, *Ap. J.* 546, L123

The Cold-Window-Radial-Discharge (CWRD)

R. Kołos; Chem. Phys. Lett. 247 (1995) 289

The Cold-Window-Radial-Discharge

R. Kołos, *Chem. Phys. Letters* 247 (1995) 289

9 ONO

KOŁOS & SOBOLEWSKI, Chem. Phys. Letters 344 (2001) 625

HNCCC IDENTIFICATION in IR

	Mode	Th B3LYP/0 (scaled	eory 6-311++G ^{**} with 0.96)	Exper (in so	imental blid Ar)
		cm⁻¹	km/mol	cm⁻¹	relat. int.
	ν ₁	3567	448	3562	0.4
¹ H ¹⁴ NCCC	ν ₂	2202	1590	2205	1
	ν ₃	1880	27	1905	0.06
	ν ₁	2658	560		0.5
² H ¹⁴ NCCC	ν ₁ ν ₂	2658 2171	560 1408	2	0.5
² H ¹⁴ NCCC	ν ₁ ν ₂ ν ₃	2658 2171 1855	560 1408 12	2	0.5 1
² H ¹⁴ NCCC	ν ₁ ν ₂ ν ₃	2658 2171 1855	560 1408 12	2 18	0.5 1
² H ¹⁴ NCCC	ν ₁ ν ₂ ν ₃	2658 2171 1855 3557	560 1408 12 435	2 18 3552	0.5 1 0.
² H ¹⁴ NCCC ¹ H ¹⁵ NCCC	$ \begin{array}{c} \nu_1 \\ \nu_2 \\ \nu_3 \\ \hline \nu_1 \\ \nu_2 \\ \hline \nu_2 \end{array} $	2658 2171 1855 3557 2193	560 1408 12 435 1591	2 18 3552 2195	0.5 1 0. 1

KOŁOS & SOBOLEWSKI, Chem.Phys.Letters 344 (2001) 625

 $\mu = 8.1 D$ (CCD/aug-cc-pVTZ)

KOŁOS & DOBROWOLSKI; Chem. Phys. Letters 369 (2003) 75

HC₃N isomers

CCSD(T)/aug-cc-pVTZ

species	Rel. energy (kcal/mol)	SPACE	LAB
HCCCN	Ο	+	+
HCCNC	26.6	+	+
CCCNH	50.9	+	+
HCNCC	77.6	-	+
CC(H)CN	48.6	-	-

KOŁOS & DOBROWOLSKI; Chem. Phys. Letters 369 (2003) 75

INTERSTELLAR MOLECULES

2	3	4	5	6	7	8	9	10	11	12	13
H ₂	C ₂ H	c-C₃H	C ₅	C₅H	C ₆ H	CH ₂ C ₃ N	HC ₇ N	CH ₃ C ₅ N?	HC ₉ N	C_6H_6	HC ₁₁ N
AIF	C ₂ O	I-C₃H	C ₄ H	$I-H_2C_4$	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH2) ₂ CO			
AICI	C_2S	C ₃ N	C ₄ Si	C_2H_4	CH₃C₂H	CH ₂ COOH?	(CH ₂) ₂ O	NH ₂ CH ₂ COOH?			
C ₂	CH ₂	C ₃ O	$I-C_3H_2$	CH₃CN	HC₅N	C₂H	CH ₃ CH ₂ OH				
СН	HCN	C₃S	c-C ₃ H ₂	CH₃NC	HCOCH ₃	CH ₂ OHCHO	CH₃C₄H				
CH+	HCO	CH ₂ D+?	CH₂CN	CH₃OH	NH ₂ CH ₃	HC ₆ H	C₅H				
CN	HCO+	HCCN	CH₄	CH₃SH	c-C ₂ H ₄ O			-			
CO	HCS+	HCNH+	HC ₃ N	HC₃NH+	CH ₂ CHOH						
CO+	HOC+	HNCO	HC ₂ NC	HC ₂ CHO							
CP	H ₂ O	HNCS	HCOOH	NH ₂ CHO							
CSi	H₂S	HOCO+	H ₂ CNH	HC₄H							
HCI	HNC	H ₂ CO	H_2C_2O								
KCI	HNO	H ₂ CN	H ₂ NCN								
NH	MgCN	H ₂ CS	HNC ₃								
NO+	MgNC	H ₃ O+	SiH ₄								
NS	N_2H_+	NH ₃	H₂COH⁺								
NaCl	N ₂ O	SiC ₃					\frown				
OH	NaCN	HC₂H			IH.					: N	
PN	OCS										
SO	SO ₂										
SO+	c-SiC ₂										
SiN	CO ₂										
SiO	NH ₂										
SiS	SICN										
	$H_{3}+$										
SH	AINC	J									
FeO											

DETECTION OF THE HEAVY INTERSTELLAR MOLECULE CYANODIACETYLENE

L. W. AVERY, N. W. BROTEN, J. M. MACLEOD, AND T. OKA Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Ontario, Canada

AND

H. W. KROTO

School of Molecular Sciences, University of Sussex, Brighton, England Received 1975 December 10; revised 1976 January 29

ABSTRACT

The $J = 4 \rightarrow 3$ rotational emission line of cyanodiacetylene H-C=C-C=C-C=N has been detected in Sgr B2. If the molecules are assumed to be in thermal equilibrium at a temperature of 30 K, a column density of 1.5×10^{14} cm⁻² is obtained. This observation provides further evidence that heavy polyatomic molecules exist in abundance in Sgr B2.

2005:

$$H = -SnBu_3 \xrightarrow{-\sqrt{2}-SO_2CN}$$

 $H = -CN$

Trolez & Guillemin, Angew. Chem. Int. Ed., 55 (2005) 2

GRONOWSKI & KOŁOS; J. Molec. Structure 834 (2007) 102

HC₃N isomers

CCSD(T)/aug-cc-pVTZ

|--|

HCCNC	26.6
-------	------

CCCNH	50.9
-------	------

HCNCC

CC(H)CN 48.6

HC₃N first detected in 1971.

How is it formed?

Original concept:
$HC_3NH^+ + e \rightarrow HC_3N + H^+$
$HC_3NH^+ + e \rightarrow H^+ + HNC_3$

-

Indeed:

HNC₃ (along with HC₂NC) detected in 1992, but: $[HC_3N]/[HNC_3] \approx 1000$!

<u>Newer concept</u>: $H_2C_2 + CN \rightarrow HC_3N + H$

(with the dissociative recombination of HC₃NH⁺ still being recognized as the main source of cyanoacetylene <u>isomers</u>)

The dissociative recombination of HC₃NH⁺

$HC_3NH^+ + e \rightarrow HC_3NH$ \downarrow $H + an HC_3N isomer$

 $\begin{array}{ll} \text{HC}_3\text{NH}^+ \text{ creation}: & \text{HCCH}^+ + \text{HNC} \rightarrow \text{HC}_3\text{NH}^+ + \text{H} \\ & \text{ or the protonation of } \text{HC}_3\text{N} \end{array}$

OSAMURA et al. Ap. J. 519 (1999) 697

KOŁOS, GRONOWSKI, & DOBROWOLSKI, A. & Ap., in preparation

Can cyanovinylidyne be detected?

Cyanovinylidene, rotational spectroscopy

CCSD/cc-pVTZ electric dipole moment prediction: 2.77 D

Cyanovinylidene, vibrational spectroscopy CCBD(T) anharmonic predictions

Mode /	Wavenumber	Intensity
symmetry	cm⁻¹	km/mol
1 / <i>A'</i>	2916.7	53
2 / A'	2257.2	22
3 / A'	1661.4	79
4 / <i>A</i> '	973.6	2
5 / A'	896.6	2
6 / A'	388.8	2
7 / A'	141.0	23
8 / A"	614.2	20
9 / A"	352.9	0

INTERSTELLAR ANIONS

$(CC)_n CCH^-$ series: n = 2: $C_6 H^-$

McCarthy et al., Ap. J. 652, L141 (2006)

n = 1, 3: $C_4H^- \text{ and } C_8H^-$

Cernicharo et al., *A.& Ap.* 467, L37 (**2007**) Brünken et al., *Ap. J.* 664, L43 (**2007**) Gupta et al., *Ap. J.* 655, L57 (**2007**)

$(CC)_n CN^-$ series: n = 1: C_3N^-

P. Thaddeus et al., Astrophys. J. 677, 1132 (2008).

Experimental studies on $(CC)_n CN^-$

► mass spectrometry, soot/graphite arcing in N₂ atmosphere Wang et al. Chem. Phys. Lett. 237, 463 (1995) <u>CN⁻</u>, <u>C₃N⁻</u>, C₁₃N⁻ (n = 0 - 6)

 matrix isolation of mass-selected ions Grutter et al. J. Chem. Phys. 110, 1492 (1999) electronic spectra n = 3 - 6 IR spectra n = 2 - 4
 n = 1 ?

The Cold-Window-Radial-Discharge

A single-nitrogen-containing non-hydride produced out of HC₃N

$- C_3N$

no agreement with calculations

P. Botschwina, M. Horn, J. Flügge & S. Seeger, J. Chem. Soc. Faraday Trans. 89, 2219 (1993)

$- C_3 N^+$

as above; tentative identification of a band at 2202 cm⁻¹ (Ne) by A. M. Smith-GickIhorn, M. Lorenz, R. Kołos & V. E. Bondybey, J. Chem. Phys. 115, 7534 (2001)

 $- C_3 N^-$

a band at 2194 cm⁻¹ (Ar) already atributed to C₃N⁻by

Z. Guennoun, I. Couturier-Tamburelli, N. Piétri & J.P. Aycard, Chem. Phys. Lett. 368, 574 (2003).

- long-lived
- nitrogen present, no hydrogen

M. Turowski, M. Gronowski, C. Crépin, S. Douin, S. Boyé-Péronne, L. Monéron, R. Kołos, *J. Chem. Phys.* 128 (2008) 164304

Vibrational spectroscopy of CCCN-

	CCSD	(T)	IR absorpt	ion in Ar	Phosphoresc. in Ar		
	cm -1 (<i>km/mol</i>)	14N-to-15N freq. shift	cm -1 (% intensity)	14N-to-15N freq. shift	cm ⁻¹	14N-to-15N freq. shift	
			2178.7 (<i>52</i>)	-22.6			
ν ₁	2182.3 (<i>474.3</i>)	-18.2	2173.0 (<i>100</i>)	-17.2	2173	-20	
v ₂	1940.9 (<i>46</i>)	-8.2	1944.3 (<i>14</i>)	-8.3	1942	-9	
v ₃	866.7 (10.0)	-10.1			873	-10	
ω ₄	532.8 (11)	-1.1			538	0	
ω ₅	203.0 (<i>14</i>)	-13.3					

Most intense IR absorptions of $C_5 N^-$ (freq. in cm⁻¹)

	Theory	Expe	riment	
mode	CCSD(T) ^a	BD(T) ^b	Ar ^b	Nec
ν ₁	2204 (1245 km/mol)	2207	2183.8	
V ₂	2129 (580 km/mol)	2126	2111.3	2115.9°
ν ₃	1928 (253 km/mol)	1925	1923.2	

- ^a Botschwina et al. (2008)
- ^b Coupeaud, Turowski, Gronowski, Piétri, Kołos, Aycard; *J. Chem. Phys.* 128 (2008) 154303
- ^c Grutter, Wyss, Maier, *J. Chem. Phys.* 110 (1999) 1492

<u>OUTLOOK</u>

- 1. The search for cyanovinylidene, in particular at UV/visible wavelengths.
- 2. Electronic spectroscopy of allowed (singlet-singlet) transitions for C_3N^- and C_5N^- anions.
- 3. Gas-phase spectroscopy of what has already been identified in frozen solids.

€, €, €, €, €, €, €, €...

Polish Ministry of Science & Higher Education grants: 3 T09A 077 27; 2004–2007 N 203 012 32/1550; 2007-2010

 \rightarrow

Polish-French PAN-CNRS project No. 19501; 2006–2008

 \rightarrow

Polish-French "POLONIUM" project No. 7064/R07/R08; 2007–2008