Diffuse interstellar bands vs. rotational temperatures of simple molecular species

Jacek Krełowski Centrum Astronomii UMK jacek@astri.uni.torun.pl

Collaborators:

Gazinur A. Galazutdinov	Bohyunsan Optical Astronomy Observatory Jacheon, YoungChun, KyungPook, 770-820 South Korea	,),
Faig A. Musaev	Special Astrophysical Observatory, Nizhnyi Arkhyz, Russia	
Tomasz Weselak	University of Bydgoszcz, Poland	
Mirek R. Schmidt	Center for Astronomy, Polish Academy of Sciences, Toruń, Poland	
Piotr Gnaciński	Institute of Theoretical Physics and Astrophys Gdańsk University, Poland	
Arkadiy Bondar	International Center for Astronomical and Medico-Ecological Research Russia-Ukraine	

-

Absorption spectral features originated in interstellar clouds

Atomic lines	Features of	Diffuse
from ground	simple molecules	interstellar bands
levels (known	(known since	(known since
since 1904)	1937)	1922)
CaII, NaI, KI, CaI and LiI (vis.) Others – far-UV (Copernicus, IUE, HST)	Polar species: CH, CH ⁺ , CN, CO Homonuclear ones: H_2 , C_2 , C_3	Unidentified; Proposed carriers: carbon chains, PAHs, fulleranes

Diffuse bands (strong and weak) may be of different origin(s)

Standard DIB wavelengths(radial velocities according to CH and KI) in HD179406

High precision HARPS spectrum suggests that DIBs belong to at least two"families"

Diffuse band 6196 seemingly shares Doppler shift with CH⁺...

Comment

- It is of basic importance to establish spatial correlations of DIB carriers and well known atoms (ions) and molecules (their ions)
- Profiles of interstellar features
 depend on both: physical parameters
 of interstellar clouds and distributions
 of radial velocities along sightlines

Difficult choice of a sample where CH⁺ line is narrow, free of Doppler splitting and shares radial velocity with other molecules

DIB broadening with T_{rot} of C_2 ; note also substructures

Strength ratio of Q_6/Q_2 transitions in C_2 indicates growth of T_{rot} from 179406 to 148184

Here red wings overlap each other

Physically caused variations of the 6196 profile (spectra from ESO, R=220,000, S/N~1000)

Wavelength

Rotational temperature of C_2 seems to be correlated with that of C_3

Comment

- Rotational temperatures of simple carbon species (C₂ i C₃) seem to be correlated
- Molecules C₂ i C₃ are the only species, available to ground-based observations, for which the observed T_{rot}'s are evidently different
- 6196 DIB profile gets broader while T_{rot} gets higher

Profile of the 6614 DIB, well correlated with 6196, changes the shape with T_{rot} of C_2 i C_3

Trot(179406) < Trot(147889)...

Profile of 5797 DIB behaves in a fashion similar to that of 6196

Profiles of the DIBs: 6196 i 6379 change in unison (spectra from Gecko CFHT)

The same effects seen in high quality spectra from ESO HARPS spectrograph

6379 DIB profile behaves in our sample as that of 6196

Substructures are not equally spaced in all spectra which is the argument against isotope shift

The same is true in the case of 5797 DIB (5796.97)

Broad 5780 DIB also changes profile together with T_{rot}

...including very broad 4430 as far as contaminating stelar lines permit to judge

Extremely high rotational C_2 temperature toward AE Aur (BOES vs. UVES)

The same effects for C_3 (Adamkovics & al.. 2003)

DIB 5797 blue-shifted and broadened in the spectrum of AE Aur

The same blue-shift confirmed by BOES spectrograph (ζPer vs. AE Aur).

Stellar and interstellar features identical in HD34078 spectra from two instruments

DIB 6379 in AE Aur is also blue-shifted and attenuated

Conclusions

- Rotational temperatures of simple, linear carbon species may be seriously different; a majority of cases fills a rather narrow range
- Profiles of some of the diffuse bands vary also with T_{rot} which may suggest their carriers are also

centrosymmentric molecules