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=> Mdus’r/Mgas = 1/100 X Z/Z@.

e In our Galaxy, it reprocesses =30 % of the stellar power. In a starburst,
it is 99 % (embedded star formation).

e It has a crucial role in the cooling and heating of the photodissociation
regions: photoelectric effect => far-IR fine structure line pumping.

e It plays a role of catalysts in many chemical reactions. H, is formed on
grain surfaces.

¢ The most accurate dust models are currently constrained from

observations of the Galactic diffuse ISM. They account for the
following constraints:

— the IR-to-mm emission (Zubko et al. 2004; Draine & Li 2007);

— the UV-to-near-IR extinction curve (Zubko et al. 2004; Draine &
Li 2007);

— the elemental depletions (Zubko et al. 2004);

(— the X-ray scattering halos; Dwek et al. in prep).

=> abundance & size distribution of the various dust types.
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Effects of the Morphologg of the ISM
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e To constrain dust evolution models: need measure of the variation of dust
abundances with time.

® Nearby galaxies are crucial: wide range of metallicity and physical
conditions

e However, the global SED of a galaxy is the intricate combination of
different phenomena:

1. Long timescale processes (= 1 Gyr): elemental enrichment, evolution of

the stellar populations (traced by Z_,);

2. Short timescale processes (= 10 Myr): massive stars, SN blast waves,
HII region evolution (traced by Lg).
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e Dust condensation in dense regions of the ISM: short timescales (10° yr).
® The lack of PAHs in low-metallicity environments...
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=> Need a SED model taking into account PAH destruction in HII regions
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Phgsical lngrecﬂients of the Model

e General interstellar radiation field: population synthesis;

e Radiative transfer: HII regions, PDR;

e Dust model: stochastic heating, realistic optical properties for PAH*, PAHO,
graphite, silicate (Zubko et al. 2004; Draine & Li 2007);

e Self-consistency: energy conservation;

® Each model parameter is constrained by the global panchromatic observed
SED of 35 nearby galaxies.
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Schemtaic of the SED Model

v' HII regions: constraints on the density from free-free.

v "PDR”: molecular clouds & diffuse ISM.
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Evolution of the PAH and Dust Abundances

Dust—-to—Gas Mass Ratios PAH-to—Dust Mass Ratio
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e Distinct evolutionary trends between PAHs and Dust.

e Benchmark for evolution models: comparison with theory.
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Production of PAHs by post-AGB stars?
e Evidence from mid-IR observations
e In other progenitors, the physical

conditions are not appropriate.

Cerrigone et al. (2009)

Is a continuous star formation history realistic?

=> Survey of the dwarf galaxies of the local volume (Lee et al. 2009),
starbursts are responsible for only a quarter of the star formation over
the history of the galaxy.

How relevant is the dust production by stellar progenitors?
Dust condensation in molecular clouds in =10° yr => indistinct
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Dust Evolution
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Dust Evolution: Delayecﬂ lnjection of PAHs

Dust Evolution v" Paucity of PAHs in
T —— low-Z: delayed
SN dust injection of carbon
dust condensed in AGB
stars.

v" Bulk of the dust
emission: SN-
condensed dust.

v" Outlyers: very cold
AGB carbon dust or chaotic star
dust |  formation history?

™

e PAH

(Galliano, Dwek & Chanial
2008, ApJ, 672, 214)




Confirmation at Resolved SPatial Scales?

SAGE: Spitzer survey of the LMC: PAH enhancement spatially associated
with AGB stars (Paradis et al. 2009).
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Summarg & Conclusion

e Phenomenological model for global UV-fo-radio SEDs of galaxies:
1. Determine the contribution of HII regions to the total SED;
2. Take into account stellar evolution;

3. Self-consistency (energy balance).

e Distinct evolutionary trends between PAHs and Dust.

e Dust abundance correlated with SN-dust production: consistent with high-
z QSO, although dust formation in the ISM can not be excluded.

e Paucity of PAHs in low-Z: delayed injection by AGB stars.

Prospectives

* better mass estimates => longer wavelengths & resolving the ISM
(Herschel).

* better constraints on individual formation/destruction processes (ISM
studies => measure production rates).




