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Abstract.

We present the formulation and the development of the inverse problem solution

method which permits one to determine surface chemical anomalies and magnetic field config-

uration in rotating CP stars. The problem is referenced as an ill-posed one. Observed Stokes

parameters of absorption lines in stellar spectra are used as input information.

The proposed mathematic model leads to a system of nonlinear integral equations for determining

local abundances and local magnetic field vectors. Analytic approximations are used to describe

local Stokes profiles and magnetic field configuration. The regularized iteration Newton algorithm

is used to solve the integral equation system. The I,V,U,Q-inverting code was tested by numerical

model computations and the question of uniqueness of the solution is studied.

1. Introduction

The stars we investigate belong to the type of
magnetic chemically peculiar A and B stars which
possess large-scale strong surface magnetic fields
and great atmospheric chemical anomalies inhomo-
geneously distributed over their surfaces. To clear up
the physical nature of these strange peculiar objects,
it is necessary to know the configuration and the value
of magnetic fields and surface distribution of chemical
elements in their atmospheres.

The only source of such a knowledge is an analysis
of spectroscopic and polarimetric observational data
on absorption lines in their spectra. Such an analysis
requires: 1) formulation of a mathematical model of
line profile formation in the atmosphere of a rotating
star in the presence of a magnetic field based on the
physical theory of spectral line formation in a stellar
atmosphere and 2) development of a method of solu-
tion of the inverse problem to reconstruct the local
Stokes parameters and to transform them into local
abundances and local magnetic field vectors.

The first attempt to solve this problem was made
by Deutsch (1970) who used spherical functions and
Fourier analysis to describe the observed changes of
equivalent widths and mean longitudinal component
of the magnetic field with period of star rotation. But
these input data did not permit use of all information
contained in the observed Stokes profiles. This is why

Deutsche method could not be used later.

The formulation of the inverse problem in terms
of a system of nonlinear integral equations (Khokhlo-
va, 1976, 1986) made it

method of solution which uses all information con-

possible to develop the
tained in Stokes profiles as input information (Gon-
charskii et al., 1977, 1982; VasiPchenko et al., 1996).
This method was widely used later under the name of
Doppler-Zeeman imaging (Vogt et al., 1987; Brown
et al., 1991; Piskunov and Rice, 1993; Khokhlova et
al., 1997, 2000).

Below we describe in more detail the points which
have been omitted in our previous publications be-
cause of lack of space but are useful for a better un-
derstanding, and also remove discrepancies in nota-
tion and terminology.

2. Mathematical
problem

formulation of the

According to the theory of spectral line formation in
the atmosphere of a rotating star in the presence of
a magnetic field, the observed integrated line profile
at each moment is the sum of local profiles over the
visible star hemisphere. Local profiles depending on
the coordinates on an inhomogeneous star surface and
in the presence of a magnetic field are the result of
polarized light radiative transfer at each point of the
star surface and may be computed by solving the ra-
diation transfer equation.

It is known that the properties of polarized ra-
diation can be completely described by four Stokes
parameters:
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I - overall (full) intensity at a given wavelength,

V - percentage of circular polarized radiation,

U and Q - percentage oflinearly polarized light (in
some specially chosen orthogonal directions, usually
connected with the orientation of the optical axis of
linear polarization analyzer).

These values depend on the wavelength inside an
absorption line profile and no polarization exists in
adjusting continuous spectrum unless the magnetic
field exceeds some 105 kG. To observe all four Stokes
parameters in absorption lines of stellar spectra one
must use analyzers of polarized light which in prin-
ciple are similar to those used for studying sunspot
magnetic fields as described, for example, in the book
by Bray et al. (1964).

In the case ofa star the integral equations describ-
ing the observed Stokes parameters are:

LV, 0,000 wt) =
f LV, U, Q(M,wt, A+ Axp, H) cos(8) d M.

cus §2>0

(1-4)

The observed phase dependent Stokes parameters are
on the left side of equations, and in the integrand on
the right side are local profiles that are dependent on
the local abunda_‘nces, the Doppler shift A)xD and the
magnetic fielcdH at a point M of the surface.

The Stokes parameters normalized to a nonpolar-
ized continuum are usually measured and they are
called Stokes parameter profiles. Taking into account
that R(M,0)=1 - I/IC(M,0) and assuming that the
specific intensity of the continuum does not depend
on coordinates but on angle & only, one obtains for
the polarization profiles the following equations:

RI,V,U,Q()\, wt) =

% [RI.V,U.Q(M:Wts A4 Az\D,ﬁ) COS(QJdM,
cos #>0
. (5-8)
where N = [l u1(f) cos(8)dM is the normalizing fac-
cos >0
tor, ul{g) is the center-to-limb continuum variation
law. For the purpose of normalizing we assume that
Ic(0)
may consider as the weighting factor.

1, and ul(0) in the integrand of (5-8) one

The system of equations is to be solved numeri-
cally by a properly chosen iteration method and for
this all functions should be written explicitly, so the
mathematical model should be formulated in details.
The system (5-8) of four integral equations does per-
mit determination of the local profiles of four Stokes
parameters which in turn are determined by four
scalars: local abundance and three coordinates of the
local magnetic field vector.

The success in solving the problem is greatly de-
pendent on the proper choice of mathematical model.
Firstly it must provide an adequate description of the

processes inside the atmosphere of a star, but on the
other hand it must be simple enough to permit devel-
oping an efficient numerical algorithm for solving the
inverse problem.

In present publication we consider the details of
physical substantiation of the mathematical model we
used and description of our method of solution for the
problem of Doppler-Zeeman mapping.

3. Mathematical model

3.1. Description oflocal Stokes parameter pro-
files in a star atmosphere

To compute local Stokes parameter profiles which
stand in the integrand on the right side of equations
(5-8) one should write down the solution of transfer
equation for each point M on the star surface for each
rotation phase at which a spectrum was taken and all
this should be done for each step of an iterative pro-
cess. The method of numerical solution of the transfer
equation is well elaborated now, but it requires too
much computer time being repeated many times. This
is why we started to use finite-dimensional approxi-
mation functions to present the local profiles of the
Stokes I parameter at the very beginning of our work
(Goncharskii et al., 1977, 1982).

It turned out to be convenient to present all
four Stokes parameters by the analytical solutions
equations for light
by Unno (1956) and complemented by considera-
tion of the magneto-optical effect in a stellar atmo-
sphere by Rachkovskii (1962), Landolfi and Landi
Degl'Innocenti (1982) resumed in the paper by Jef-
feries et al. (1989).

Our calculations have shown that for early-type

of transfer polarized obtained

stars the Faradey effect is negligible, and then the
solution appears to be:

Ri(M,wt, )+ AXp, H) =
Bu _ L+m 9
1+ 8p (L+nf—nf —ni — 5

Rvyo(M,wt, A+ Adp, H) =

Bu T.u.e
1+ B \ (L4} =0} =% ~ 1

(10-12)

These analytical solutions were obtained for a sim-
plified line formation model under the assumption
of depth-independent ratio of selective to continuum
absorption coefficients § = k/kc and also linear

depth dependence of source function in continuum
B(r) = Bo(1 + 87).

Let us consider first a simpler case of mapping
abundance anomalies where the magnetic field is
small or the line used has a small Lande factor, so



the effed of magnetc field is negligible Then the so
lution of only equatim (9) permits one to obtain a
map of chemicda anomalies (Dopple mapping)

In this cae all terms which account for the mag
netic field in equation (9) turn to be zera Remem
bering that R;{(A0) = (Io(0) — 7(A,0)) /Ic{0) and
after simple transformatios one obtairns for | Stokes
paramete profile:

Bp 7
Ri0) = ——r L
© 1+ 3u 1+9,'
where p = cos(d).
Note that expressio (13) resembls by its struc
ture the empiricd Minnaett (1935 formula usda in
our earlie work (Goncharski et al., 1977 1982)

- R TH(a,v)
-re R+ 7H(a,v)’

This formula was proposel by Minnaet to ap
proximate line profiles in a sola spectrum and he
measurd R, (the centrd line depth directly from
this spectrum By the definition 0 < R, < 1.

Comparirg (13) and (14) one may sugges that
in the ca® of (13) the first factor also plays the role
of the line centrd deph which depend (nonlinearly)
on the numbe of absorbig atoms We hawe found it
conveniem to use as an approximatirg function the
expression

(13

Rr(X) (14)

o H ((1-, U)

= e T )

{15)
It is possibk to choo® an approximating function
expressig the dependene of R on 7,:

Rp =0y (1 — e%amo), (16)

where C, is the centrd depth of avery saturate line
and C, is the properly chosen numericd parameter

Thes analyticd expression descrite well the de-
pendene of the line profile on the abundane of an
element as 7y is proportiond to the numbe of line
forming absorbim atoms This permits 7, to be con
sideral as one of the principd values to be determinel
when solving the inverse problem

Expressim (13), neverthelesscannd descrile rig-
orousl the center-to-linb variation of aloca line pro-
file becaus the abow analyticd solution takes into
accoun only the angl # for the intensity in the con
tinuum. Besides the assumptio that the soure func-
tion is linearly dependeh on depth may be wrong in
the uppe atmospherg layers where strong lines form.
This may cau® difficulties and errors when estimat
ing locd abundance using 1y found from (13). So one
naturally need to connet¢ profiles (13) with the pro-
files obtainel by numericd integration of the transfe
equatian for a more adequa¢ atmosphee model

Numerots observationadata shov that the atmo-
spheres of CP stars with moderae magnetc fields do
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not differ much from the atmosphers of normd main
sequene stars and well elaboraté theoreticd atmo-
sphee modebk such as Kurucz (1992 modebk with
appropriae parametes T,, and logg may be usd
in this case

The mog explicit way of using theoretica profiles
for Doppler imaging was taken by Hatzes (1991) and
also by Piskunos and Rice (1993 who precalculatd
and stored in memowy a grid of profiles as a function
of abundane and in the proces of iteratiors retrieved
and interpolatel data from tables

In our metha we also precalcula¢ by numert
cd integration a grid of Stokes specifc intensity pro-
files R for a se¢ of abundance for ead line we use
for mappirg and we approximae thes profiles by
formula (15). The specid code has been develope
to choo® parametes of the approximatimg function
which was describe in detaik in sectim 2.21 of our
pape (Khokhlova et al., 1997)

Thes parametersexcef gy, do not depen on co-
ordinates on the star surface Practically they do not
deperd on the value of 7, (the line intensity) either
The dependene of the line profile on # is taken into
accoun by the factor Ua(f}. This function presens
a linear or quadratc expansim by g = cog#), coet
ficients being found from the se& of theoretich pro-
files for each particula line. The line may becone
stronge or weake from cente to limb, dependig on
ionization and excitation potentials This techniqle is
also demonstratd in Fig. 2 in the pape by Khokhlo-
vaet al. (1997)

It is clea that when the role of a magnetc field
cannd be neglected and it is necessar to solve si-
multaneousy the four equatiors (5-8), the problem
is getting much more complicated In this ca® the lo-
ca polarizatia profiles deper not only on the locd
value of the magnetc vecta at point M but also on an
instantaneos value of the angle betwee this vecta
and the line of sight at point M, which changs dur-
ing the star rotation In this ca® the precalculatio
of the locd profiles retrievd and interpolation from
tables in the proces of iterations become unrealistt
even for big computers Application of analyticd ap
proximatiors is practically the only way to solve the
problem

To descrile the Stokes profiles in the ca® of mag
netic field, we use analyticd solutiors (9-12). In the
quantities n;y,9 = ﬂoff,v,uo('\:ﬁ) the functiors
f(/\,ﬁ) are convolutiors of eadh componen of the
Zeema pattemn split by the locd magnetc field at
the momen of pha® wt with a Voight profile (the
group of # componens as well as the right- and left-
polarized &# componeng are treated separately) The
Zeeman patterrs and relative intensities of compo
nent are known from the classich physics (for ex-
ample see Condm and Shortley 1951) and for LS
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coupling they were calculata by Beckes (1969) All
formulee we usal for this gener& case are given in
our papes (Vasil'chenlo et al.,, 19% and Khokhlova
et al,, 1997)

In conclusim of this sectio we note some state
ments which justify our use of analyticd approxima
tions of the locd Stokes profiles

1. The transfe of light of one of polarizatin
states (¢ +, ®, or #— component may be considere
independent} of ead other.

2. The intensity profile of ead polarized Zeema
componen is formed in the same way as the profile
of intensiy of unpolarizel light.

3. The differene betwee Miln-Eddington atmo-
sphee and a more sophisticatd moden compute
star atmosphee is more importart for paramete 7
and hene the intensily profile. But well chosen pa
rametes of approximatiom describel by Khokhlova
et al. (1997 make the differene betweea intensity
profiles rathe small We may refe also to the re-
sults reportel by Hardomp (1976) which show that
the numericd solution of the transfe equatim for a
magneticaly splitted profile and analyticd formula of
Unno type lead to similar results

4. The assumptio that the atmosphee modd is
independenof coordinate is doubtfd when the mag
netic field and chemicd patche on the star surfae
are strong One cannd be sure that the locd profiles
calculatel by numerica solution of the transfe equa
tion for one fixed atmosphee modd are valid for the
whole star, no matte how they are used by extrac
tion from tables or by analyticd approximation

5. We hawe found that the magnetc field con
figuration obtaine from lines with different Zeema
patterrs is practicaly the same This is an evidene
that no gros errors arise due to our analyticd ap
proximation of locd Stokes profiles

3.2. Analytical description of magnetic field
configuration

All measuremerst of effective magnetc fields of CP
stars that havwe been made up to now show that
mog of them hawe large-sca¢ regula dipolar mag
netic field structures but now afew stars are known
with a quadrupoé component For example in the
B2V He-variabe CP sta HD 3777 the quadrupoé
componehis dominant and even an octupok compo
nent was suspectd (Thompsm and Landstreet 1985
Khokhlova et al., 2000

This makes it naturd to seard magnetc configu
ration as an expansia of spherich harmonic of mag
netic multipole potentiak to an arbitrary high orde
(Bagnub et al., 1996) In principle, this permits one
to descrile any field configuration but taking into
accoun highe numbe of multipoles one gets insta
bility of the solution due to incompletenes or inac

curag of input data It was shown (Khokhlova et al.,
2000 that in the ca® of HD 3777 having adominan
quadrupoé field, the addition of octupole-produce
instability (in the sen® that octupok vectors derived
from different spectra lines sprea over a big area)
This questio is considerd in more details in sectim
5 when discussiig the problem of uniquenes of the
solution

4. Method of solution

From the mathematich point of view the mappirg
problem leads to the systan of integrd equations

Rivut) = = [[uuRo () x

cos >0 (17)
1+
x|1— - de,
( (1+n§—n%*n?;*n%)
1
RupeOwt) = % [[uiuRo )
cos >0 (18—20)

Tvug
X e da.
((Hn? -y =y —né)

Here the unknowrs are functions of two argu
ments — function of distribution of chemicd com
position ng(L,¢) and distribution of magnet¢ held
H(L,) over the sta surface The functiors MV.UQ
in equatiors (17-20 can be written in the form
”’?Lv,u,q('\:ﬁ) = nof,,v‘r_,,q(/\,ﬁ), where the functions
f.r,v.u,q(’\nﬁ) are denna in (3.1) and represehnon
linear functions of their arguments Thus the systam
of integrd equatiors (17-20 is non-linear

In this metha we use parametr¢ representatin
of the magnetc field on the star surfae which may be
either a displacel dipole modd or decompositio to
axially symmetrc spherichd harmonic up to the third
order (dipole, quadrupoé and octupok moments) In-
cluding of highe orders in our code is also possible
Let us denoe the se of parametes that define mag
netic field as h € R° when using the displacel dipole
modd and as h € R’ for spherich harmont decom
position

Designatig integrd operatos in (17-20 as
F.(h,7np), we write it in a more compac¢ form:

R. = Fo(hymy), =={LV,U,Q} (21

We will suppoe that all the observel profiles
Rz(M wt) belong to Lafll] where M = {X € (A -
83, A+6X), wt € [0,27)}. The valuedXis defined as
half of the full width of the spectra line unde inves
tigation. The choice of the spae L, is determinel by
the usag of mean squae metric to measue the dis-
crepany between the observel and synthesizd pro-
files. To solve the inverse problem we hawe also to




determire a spae@ the solution will belorg to. Let the
function 7y be of spae T, and the se of unknowrs
z=(h71)€Z=R XxT (Z = R xT). To choo®
spa@ T one has to take into accoun the following
aspects

* operatos F, are to be definad in Z or its closal
subset

* convergene in spa@ T should guarante a de-
sired convergene of the approximae solutions

« the effective algorithm of the solution of the
inverse problem for non-linea integrd equatiors in
spa@ T exists

Here we use the Hilbert spa@ L,(}) as T, where
¥ is the surfa® of the unit sphere This sphee can
be parameterizedfor instance by longitude ¢ and
latitude L. The main reasm for this choice is the
simplicity of the numericd implementatia of the al-
gorithm. It is eay to see that integrd operatos F,
are continuots and even completey continuots in the
pair of spacs Z —> L/[II]. Unfortunately use of spae
T = L{f2) does not guarante uniform or even point-
wise convergene of approximae solutions To force
stronge convergene one need to use stronge met
rics in spae T, for exampke T = W-{{1} while devet
oping method of solution for the inverse problem

At the presen time only wide-bard data of linear
polarizaticm measuremerst (U and Q Stokes param
eterg are available and there are only a few stars
that provide sufficient data on circular polarization
Therefoe we neal sometima to solve the problem of
finding chemicd& compositiom and magnetc field of a
sta by an incomplet se of input Stokes parameters

The following case of indices X may be realistic
to descrite different statemeng of the problem when
different observationh data of Stokes parametes are
available

- only information for non-polarizel specta is
available

- both intensiy and circular polarization pro-
files are available for now this is the mog usud case

- all Stokes line profiles are availabk - this is
the mog favourabk cas to solve the inverse problem
But measurememof the U and Q Stokes line profiles
is arathe difficult technicd problem and the se& of
thee data may be replacel by integratel broad-baud
linear polarization data

Our experimens showal that if a sta has a suffi-
ciently strong magnetec field, so that magnetc split-
ting of Zeema componens is greate than rotationd
Doppler widths, one can find chemicd compositin
and magnetc field even when only | Stokes parame
ter is availabk (the ca® of Babcodk star, Khokhlova
et al,, 1997) To solve the mappirg problem for stars
with relatively wea& magnetc fields one need data
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on circular polarizatian in addition (numerica exper
iments)

The properties of the operatos F, : Z ---> L [I]
make us use specid algorithms to solve the mini-
mization problem which guarante stability of the ob-
tained approximae solutiors (Tikhonov et al., 1995)
Regularizel method to minimize the discrepang
functiond

®(z)= > |Fz(2) - Rell?

z€X

are usal to solve non-linea ill-posed problems

In the ca® T = L,({t} one of the mog effective
methods of solving the systemn of non-linea integrd
equatiors (21) is the Newtons iterative methal as de-
scribed for exampk by Bakushinski and Goncharski
(1994) Given the currert approximatian z,, the next
one can be calculate using the formula

-1
Zpy1 = Z + <Z F;,'(zk)Fz'(zk) + D.’kE> x

zeX

X

S FU () (Folz) — Ra) + Ctxzk] . {22)

zEX

Here Fi(z} is the derivatie of the operato
F. a point z, and F." . La{lt} — Z is the
operats conjugae to Fi(z), ag is the sequene
of positive numbes tending to zera Operatos

< Y FL(ze)Falar) +akE> exist and are contin
rEX

uous owing to the positive value of ag. To guaran
tee the stability of the approximaé solutions the
sequene a; mug not decreas too fast Generaly
speaking one has to choo® o basirg on the investi
gations of the properties of the non-linea operatos
F, but it is well known that q = 1/\/E usually pro-
vide convergene and stability of the approximaé so-
lutions if the first approximatio is chose sufficiently
close to the exad solution We usal the sequene

o = ag/VEk, {23)

where the value of @ was found by numericd exper
iments

Iterative algorithms usea to solve ill-posed prob-
lems are to be supplied by the so-callel stoppirg rule.
This implies that one has to take as the approximae
solution of the ill-posed problem the iteration of (22)
with the numbe k, that correspond to the observa
tional data precision The more preci® is the input
information,tle greate numbe of iteratiors mug be
calculatel by (22) to get a stabk approximaeée solu
tion.

The methda which uses (22), (23) guarantes the
stability of the approximae solution if we use a stop-
ping rule like n == 1/\/f6), where § is the precisim
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of the observationhdata in mean-squa metric. We
used

n =ﬂo/\/3

and adjustel the value of n, empirically.

As it was mentionea abowe the methad using (22-
24) gives a stabk solution only if the first approxk
mation z, is chose to be close to the unknown exad
solution Unfortunately in practice it is impossibk to
verify conditiors imposel on the first approximatia
by Bakushinski and Goncharski (1994 due to the
too complex form of the operatos F (2. Numericd
experimens shov that the dired application of the
methad (22-24 could be successfuonly if avery good
first approximatio is available

To solve integrd equatiors (21) in the cae where
the quality of the first approximatim z cannd be
a priori estimated we usal the regularizel iterative
methal in the form:

{24)

~1
Zpt1 = Zk + <Z Foo (2k) Foae) + GE> x

z€EX

X [Z F, (k) (Felzi) — Re) + azk:l (25)

z€X

with the constan regularizatiom paramete a. This
is just the Newtons metha to minimize smoothirg
functiond as describe by Tikhonov et al. (1995) The
regularization paramete was chos@ base on numer
ical experiments

We usdal discrepang methad as a stoppirg rule.
According to this methad one has to continwe itera
tions (22) or (25 until the discrepanyg reachs the
value of the precisia of input information that is

P(zp) > 8, and ®(zpy1) <6 (26)

This metha has proved to be effective while solving
a lot of applied problems Non-adherimg to the stop
ping rule and the use of too mary iteratiors leads to
instability of the obtainel solutiors and therefoe to
false decisiors on the structure of the surfae distri-
butions in the star atmosphere

Note that the possibility of choosig the numbe
of iteratiors from condition (26) depend on the ad
equagy of the used mathematichmodd and in turn
can serwe to prove this adequacy

We hawe performal alot of numericd experimens
and hawe investigate the properties of method (22),
(23), (26) and (25), (26) for differert modd distribu-
tions. It appeas that the first combination of (22),
(23), (26) allows one to investigae very detaila dis-
tributions, but requires a good first approximation
The secom combination of (25), (26) is not sensibé
to the first approximation but makes convergene too
slow. It also becane clea that the convergene of the
approximae solutiors in the metric of the spae L,

is not sufficiet enough Hence the following modifi-
cation has been develope for further usage

It was decidal to use the smoothirg functiond in
the following form:

M(z) = $(z) + allV (o)1
S 1Fa() - Roli? + all Vgl

zeX

(27)

The additiond term with the gradien of unknown
function 7, does not allow large oscillatiors of the
locad abundane when minimizing M(2. As well it
smoothe the edges of abundane distribution Reg
ularization of the zero order in the form of (25 may
lead to a more "detailed distribution especialy if
the input information error levd is underestimated
But thes detail usually hawe artificial or computa
tional origin resultan from the ill-posed nature of the
problem and cannd be regarde as red ones We do
believe that one has to find as much smooh solutiors
of (21) as possible

In this case the regularizel Newtons metha can
be written as

—1
Zpyr = 2 + <Z Fl* (z)Filze) + akV'V> x
zeX

x [Z F (o) (Faloe) - 2 + akvwo.] (29)

zEX

The following expressio for the sequene tg was
usdal (g being chose empirically):

= ol
TVm.I?

This sequene (29) assurs that the regularizatio
paramete decreasge as the approximation tends to
the exad solution We usal a stoppirg rule in the
form (26).

We usea the following finite-dimensio approx
imation of the data to implemen the numericd
methad of solving (21). The function ng{L, ) was
approximate as a piecewig® constam function on
the rectangula grid on the visible surfae of a star
and was representd as the vecta fj; of dimensim
n = n xng,. Input data — Stokes line profiles —
were given for the se of rotation phase wi; and each
of thes profiles was representd as a se& of values at
the wavelengtls in the vicinity of the centrd wave
length Ag. Thus the input data are also the finite-
dimension vecta # . Now we can approximae non
linear operatos F, as functions of the finite numbe
of argumens n + 6. The derivatives of the operatos
are approximate as the matrix of partid derivatives
and the conjugae operato can easiy be found as
conjugation of matrices

(29)



Table 1: Models of magnetic field which were tested

modl mod2

L ¢ H,|L ¢ H
D10 45 100 0 10
Q |45 45 10|45 -45 10
Oct|90 4 5 |- - -

As we hawe alread/ mentioned the matrix approx
imating 3 F.*(zx)Fi(zx)+ axE is well-conditiona
rEX

due to theazx > 0 and we can use standad algorithims
of linear algebm to inverse the matrix when solving
the systam of linear equations

5. On uniqueness of the solution and
testing of the method by model com-
putations

The questi;m on uniquenes of the solution obtainal
by Doppler-Zeema imaging is obviously of a greda
importan® and it should be thoroughy studied The
answe will certainy depem on the precisim and
completenes of the observe input information

Using analyticd expression for the magnetc field
as expansio in series of sphericd harmonis of mag
netic multipoles potentiak may lead to a situation
when various set of multipoles creat amagnetc field
configuraticm which is similar to the red one thus
providing severd loca minima of the residual It is
importart for us in such a ca® to know that thes
configuratiors are really very close to eadh other. In
such a ca® one may spe& not abou ambiguoss so
lution but rathe abou ambiguos mathematich de-
scription of the same true solution

The mog convenien way to study the problem of
uniquenes of the solution as it was mentiona ear
lier, is numerica testing of various models We hawe
found by sud testing that non-uniquenes appeard
dependig on the modd which is usal as an initial
approximation if it is taken to be not too far from a
true model the solution convergs to the true model
It is convenien to take as sud initial approximatio
the homogeneos abundane distribution equd to the
observel averagd over the star disk abundane and
roughly visually gues estimation from the observe
V profiles of the position and strengh of magnetc
poles If the initial approximatia is taken arbitrary
to be far from the true model then the minimization
of the residua may lead to false minima

Below are some example of sudch situations The
modek which were tested are shown in Table 1. Mag-
netic fields were formed by combinatiors of non-axid
but centerel dipole, quadrupoé and octupok with
coordinates L,  and polar strengh H, (kG).

The testig was made for the angk i = 45° and
V,sini = 50km/s The "observed profiles of the
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Table 2: Starting models used as initial approrimation
for iterations

strl str2
L ¢ Hy| L o H
D |60 60 15[ 60 60 15
Q |60 60 15(105 O b
Oct|60 60 15| 0 -30 2

Table 3: Model solutions obtaine

No. L ¢ H, a min

1 D 0 45 10 |0.00008 | I,V,U,Q
modl+m2a| @ | 45 45 10
strl+m300 |Oct]| 30 45 5

2 D 0 45 10 | 0.00022 LV
modl4+m2a| Q | 45 45 10
strl4ml00 |Oct| 90 45 5

3 D -7 43 10 | 0.0006 LV
modl+m2a| @ | 55 44 12
str24+ml00 | Oct | -37 17 2

4 D 5 46 15| 0.0031 [ LLV,UQ
modl+m2c | Q@ | 108 -42 -6
str24+ml00 | Oct | -99 24 4

5 bl 22 38 12] 00013 | LV,UQ
modi+m2a| @ [ 128 31 -5
stt1+m300 | Oct | -103 -55 -13
(77 55 13)

6 D 0 0 10 | 0.00007 Lv
mod3+m2b| @ | 45 -45 10
str24ml00 {Oct| - - =

7 D -1 2 9.5 0.00046 LV
mod24+m2¢c{ ¢ | 45 -44 93
str2-+ml00 | Oct| - - -

Si Ill line 4574 A (normd Zeeman triplet) were com
puted for the atmosphee of a B2V star, similar to
HD 37776 studied by us (Khokhlova et al., 2000)
Model Stokes profiles were computea for three kinds
of abundane distribution

a) aspa with ten-fold underabundane (m2a)

b) aspa with ten-fold overabundane (m2b),

c) a highly overabundan strip located along the
position of the maximum tangentid magnetc field
componen (m2c).

The computel modd profiles were usel as input in-
formation to solve the modd invers problem In Ta-
ble 2 the modek usa as initial approximatios are
shown and the solutiors obtainel are given in Ta-
ble 3.

In the first column of Table 3 the uppe row in-
dicates the tes number the next row is the modd
testad from Table 1, and the lower row indicates the
initial approximatim modd for the magnetc field
and abundane distribution

In the secom and third columrs solutiors (multi-
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poles and their coordinates) are given.

In the fourth column are the residuals and in the
fifth is the type of solution (I,V,U,Q-inversion or 1,V-
inversion)

Figures 1-7 demonstrate the original abundance
and the magnetic field configuration together with
those reconstructed by the inversion procedure. The
examples No.l and No.2 show that if the initial ap-
proximations are chosen properly, the solutions con-
verge to the original models precisely even without
linear polarization input data. The minimization of
the residuals was made by the I and V Stokes profiles
only in that case, but the U and Q profiles were com-
puted and compared as well. The minimization by I
and V was enough to decrease residuals for U and Q.

In the examples No.3 - No.5 the initial approxi-
mations are farther from the original model, or the
model is more complex. In these cases residuals are
about an order of magnitude larger than in the cases
No.l and No.2. It is important to note that they still
remain smaller than the possible error in the avail-
able observed profiles. But what is more important,
these solutions describe magnetic field configurations
which are close enough to the original "true" models.
The examples No.6 and No.7 show that in the ab-
sence of an octupole component in the magnetic field
configuration it is easier to get a "true" solution.

The testing showed that the difference in the
abundance distribution does not influence noticeably

the determined magnetic configuration. At least two
recommendations follow from the above results of
testing, which may help find "the best" solution:

1. If only one spectral line of an element is used
for D.-Z. mapping, it is necessary to compare the re-
sults obtained with different initial approximations.

2. Several lines of one element should be used for
mapping.

Another important conclusion follows from the
tests described above: fine details of magnetic con-
figuration of models can be revealed only when the
residual is very small — much below observational
errors for real stars.

The real error in the observed Stokes parameters
is determined not only by the S/N ratio, which now
probably may reach a value of 500 (which would coin-
cide with o = 0.002), but according to our experience
it is limited by a value of > 0.005 because of unre-
vealed blending by very faint lines and by errors in
drawing the continuum.

The necessity of stopping iterations at this value
of the residual (see stopping rule (26) in section (4))
may not allow the best of possible solutions to be
achieved. Nevertheless our test shows (Figures 1-7)
that the solutions obtained give a correct (though in-
evitably rough) idea of magnetic field configuration
and permit studying its connection with the location

of chemical anomalies. The limit is set at the present
time mainly by observational errors, and also by a
poor knowledge of the local atmosphere structure.
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Hn-mod

Hi-mod Hi-R
Fig, 1 The maps in rectangular projection of a distribution of normal and
langential magnetic field components over a star surface Ho and He for
model (mod) and reconstructing solution (R). Increasing of the values
correspond 1o light in the pictures.
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Abn-mod Abn-R
Fig. 2 The same as fig.1 but supplemented with the abundance distribution
maps {Abn}
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Fig. 3 The same as fig. | {see text)
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Abn-mod Abn-R
Fig. 4 The same as fig.2 (see text)

Ht-mod Ht-R
Fig. 5 The same as fig.] (sce text)
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Fig. 6 The same as fig. 1 (see text)
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Ht-maod Ht-R
Fig. 7 The sivne as fig. 1 {see text)



