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Abstract. The phase curves of the integral magnetic field strength and the
phase-dependent line profiles in the four polarization modes are calculated and
graphically demonstrated using the method of modeling magnetic field structures
on the surface of a star by the Magnetic Charge Distribution (MCD). Phase curves
and line profiles are analytically represented by convolution integrals, which al-
low the linear superposition of elementary relations derived from single magnetic
sources as the generating constituents of any complex magnetic field. Usually,
the influence of the geometrical conditions of vision on the line profile, basically
shaped by radiative transfer through the stellar atmosphere, has been neglected.
The magnetic field distribution over the surface strongly affects the shape of the
line profiles. It leads to asymmetric profiles with high uncertainty in practical
measurement of magnetic fields by Zeeman displacement of spectral lines.
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1 Introduction

Modeling of the magnetic field structure of stars for fitting the derived magnitudes of the field strength
to the observation requires a physically founded theory for the construction of the field by the generating
magnitudes. Relating to the potential theory, the magnetic field — like every vector field — is generated by
its sources and vortices, which combine superposing the fields linearly. The modeling method of the Magnetic
Charge Distribution (MCD) after Gerth et al. (1997, 2000) allows the calculation of the fields of point-like
sources with virtual magnetic charges. The combination of two oppositely charged sources is a magnetic
dipole with a magnetic moment, which is a real generating magnitude and can be taken as the elementary
brick for construction of any complex magnetic field. The observation of the integral magnetic field from the
star’s surface is given as phase curves and line profiles of the polarized light according to the four Stokes
parameters I, Q, U, V. With the help of the model, typical phase curves and line profiles can be constructed,
compared with the observed ones, and fitted to them by variation of parameters.

The theory for the algorithms of the computer program is described by Gerth et al. (1997) and Gerth,
Glagolevskij (2001). The program allows the calculation and the graphical representation of maps, globes
and line profiles in connection with the phase relation. The line profiles with the center of gravity are shown
on the screen, moving in the course of the star’s rotation.

2 Observation of the integral radiation

On the stellar surface, the field is distributed by the two coordinates: ϕ — longitude and δ — latitude,
arranged as a matrix in a Mercator map. The distribution function B(δ, ϕ) of the map can be taken from
observation or from calculation of star models. Bagnulo et al. (2001) calculate the surface distribution of the
magnetic field by means of spherical harmonics. We relate to a model, which is based on virtual magnetic
sources, which combine to real magnetic aggregates.
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The spatial field distribution of a virtual magnetic monopole is the elementary field, for the calculation of
which a standard algorithm is developed (Gerth and Glagolevskij 2001). This is the heuristic reason for the
use of virtual sources.

The field components of a decentered magnetic monopole with r as the distance of the point-like source
to the center and the magnetic charge Q in the constant C = – Q/4π are:

Br = (C/r3)[cos δ(cosϕ + sin ϕ) + sin δ], (1)

Bϕ = (aC/r3) cos δ(cosϕ − sin ϕ), (2)

Bδ = (aC/r3)[cos δ − sin δ(sin ϕ + cosϕ)]. (3)

The calculation of the magnetic field strength renders such a triple of values to every point of the surrounding
space. The visibility of such a point on the surface depends on a lot of conditions bound to geometry, phase
and physics of the star. The globe of the star is seen by the observer under different aspects, caused by its
rotation and the inclination i to the rotational axis. Besides of this, the visible disk is “vignetted” by the
limb darkening according to the empirical formula with ε denoting the angle from the center of the disk

k = 1 − 0.4 cos ε. (4)

2.1 The phase relation

For the visibility of the star by the observer, we define a window function w(i, ε, δ, ϕ), containing the incli-
nation i, the projection of each surface element to the line of sight, and the limb darkening with its angular
distance ε from the center of the visible disk, which averages and normalizes the vector B(r, δ, ϕ) with the
orthogonal components Br, Bf , Bd of the surface magnetic field:

B int(t) =

π/2
∫

δ=−π/2

2π
∫

ϕ=0

B(r, δ, ϕ)w(i, ε, δ, ϕ − t)dϕdδ

π/2
∫

δ=−π/2

2π
∫

ϕ=0

w(i, ε, δ, ϕ − t)dϕdδ

. (5)

Equation (5) is the analytical representation of the phase curve for three orthogonal vectors in Cartesian
space.

This integral formula gives the integral mean of the disk seen by the observer and comprises the
convolution integral, which represents the rotation of the star with its map B(ϕ, δ) behind the window
w(i, ε, δ, ϕ). The magnitude t is set equivalent to the longitude ϕ and characterizes the rotation at the time
of the momentary orientation angle at the longitude ϕ as a function of time. The denominator makes the
normalization.

2.2 The line profile

Usually we measure the (integral) magnetic field from the Zeeman displacement of the line profiles of
oppositely circularly polarized light. What we call the “effective magnetic field” Beff is not a mean value but
already the result of weighting and convolution of the radiation flux containing the magnetic field information
about the form and the position of the profiles of all surface elements, in which the line forming process takes
place.

The observed line profile is formed by different physical processes:
1) radiative transfer with atomic interaction in the stellar atmosphere;
2) microturbulence (thermic motion);
3) macroturbulence (convection);
4) flow movement (circular, meridional, and equatorial currents);
5) observational and instrumental conditions (seeing, optics of telescope and spectrograph, resolution of
storage, reduction etc.);
6) rotation (including inclined and differential rotation);
7) geometry of the radiating parts of the star’s surface seen as a disk by the observer in integral light.

All these processes lead to a vast mixing of influences. As far as convolution is involved, we can analyze
single broadening profiles, like the so-called instrumental profile. We put all profiles, which broaden the
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radiative transfer profile, together with the profile function ω, which comprises more or less the influences
1–5. The point 6 is connected with the radial velocity, which gives a shift of the line profile in the spectrum
and has to be treated equally to Zeeman displacement due to the magnetic field.

In this paper emphasis is laid on the iinfluence of the geometry according to point 7. Hitherto, the profile
formation has been investigated mainly at plane atmosphere layers, not accounting for the spherical star body.
In order to get clear relations, we restrict the line profile formation to the geometrical conditions, which we
will analyze separately from all other influences. The basic profile, of course, is formed by the transfer process
of radiation through the stellar atmosphere, to which the other influences are subordinated.

The distribution of the polarized radiation over a region b around B is defined by ω(b) and convoluted to
phase integral equation (5):

B int(t, b) =

π/2
∫

δ=−π/2

2π
∫

ϕ=0

+∞
∫

−∞

B(r, δ, ϕ, β)w(i, ε, δ, ϕ − t)ω(β − b)dβdϕdδ

π/2
∫

δ=−π/2

2π
∫

ϕ=0

+∞
∫

∞

w(i, ε, δ, ϕ − t)ω(β − b)dβdϕdδ

. (6)

Equation (6) is the analytical representation of the geometric line profile in the course of phase, containing
the convolutions due to rotation and the frequency distribution of the field strength.

In our computing program we relate to the fact that the gravity center of two profiles of different height
and position is given by the mean of the centers weighted by the profile integrals. Thus, we weight the
magnetic field vector, projected onto the line of sight, of all surface elements with their spherical projection
and limb darkening and integrate them over the visible hemisphere. If from the visible disk the majority of
field vectors is directed to the observer, then there would occur a high maximum with a narrow line width.

For the investigation of the geometrical profile for its own — without the other line forming influences —
we set the distribution function as a δ-function

ω(b) = δ(β − b). (7)

3 The Stokes parameters I, Q, U, V

The four polarization modes of light radiation of a star viewed under the inclination angle i to the rotation
axis are described after Stokes by the parameters:
1) I — intensity of the entire radiation flux;
2) Q — linear polarization in the plane to the rotation axis;
3) U — linear polarization perpendicular to the rotation axis;
4) V — circular polarization to the line of sight.

The four Stokes parameters constitute a linear set of quantities, which describe the polarization conditions
of a radiation beam completely. If we take the four parameters as a vector, then changing conditions of spatial
arrangement and absorption can be easily accounted for by linear transformation by a quadratic matrix of
rank 4. By this way, the polarization modes were calculated in the papers of Piskunov and Kochukhov (2002).
We use here a more direct way of calculation on the basis of vector algebra.

The polarization modes Q, U, and V of the magnetic field follow from the projection of magnetic field
vector on the line of sight in 3 orthogonal directions. As outlined by Gerth and Glagolevskij (2001), the radial
direction of the field vector in every element on the surface is given in Cartesian coordinates with the unity
vectors i, j, k and the geographical coordinates of the longitude ϕ and the latitude δ to

ar = cos δ cosϕi + cos δ sin ϕj + sin δk, (8)

aϕ = − cos δ sin ϕi + cos δ cosϕj, (9)

aδ = − sin δ cosϕi − sin δ sin ϕj + cos δk. (10)

With the three spherical components Br, Bϕ, and Bδ of the magnetic field vector at the surface of the star
is given in Cartesian coordinates:

B = Brar + Bϕaϕ + Bδaδ. (11)

The projection of the magnetic field vector related to each point of the surface is carried out by a scalar
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multiplication of the magnetic field vector B with its components Ba, Bϕ, and Bδ adjusted to the vector of
the line of sight,

q = sin i sin ti− cos ij + sin i cos tk, (12)

u = − cos ii + sin i sin tj + sin i cos tk, (13)

v = sin i cos ti + sin t sin tj− cosik. (14)

Carrying out the scalar multiplications, the polarization modes Q, U, V are:
BQ = B q = Br(cos δ cosϕ sin i sin t − cos δ sin ϕ cos i + sin δ sin i cos t) +

+ Bϕ(− cos δ sin ϕ sin i sin t − cos δ cosϕ cos i) +

+ Bδ(− sin δ cosϕ sin i sin t + sin δ sin ϕ cos i + cos δ sin i cos t). (15)

BU = B u = Br(− cos δ cosϕ cos i + cosδ sin ϕ sin i sin t + sin δ sin i cos t) +

+ Bϕ(cos δ sin ϕ cos i + cosδ cosϕ sin i sin t) +

+ Bδ(sin δ cosϕ cos i − sinδ sin ϕ sin i sin t + cos δ sin i cos t). (16)

BV = B v = Br[cos δ sin i(cosϕ cos t + sin ϕ sin t) – sin δ cos i] +

+ Bϕ[cos δ sin i(cosϕ sin t − sinϕ cos t)] +

+ Bδ[− sin δ sin i(cosϕ cos t + sinϕ sin t) − cos δ cos i]. (17)

From the modes Q, U, V we derive the Stokes parameter I as the quadratic sum

BI =
√

B2

Q
+ B2

U
+ B2

V
. (18)

For the numerical calculation we replace the integral transformations by matrix multiplication. The map
of the magnetic surface field is discretised into surface areas as matrix elements, each element representing
the integral mean value of this area. The profile is compiled in a frequency distribution as a grid of classes,
in which the values of the magnetic field strength of every surface element is sorted in. The computation is
performed for each vector component separately.

4 Phase curves and line profiles

We demonstrate the computation of phase curves and line profiles by graphics. Here are raised only two
typical cases:

1) magnetic monopole in the equatorial plane,

2) magnetic dipole, both seen equator-on in the equatorial plane.

The magnetic dipole in the plane of the equator is realized approximately in the CP star 53 Cam (Bagnulo
et al. 2000, Gerth et al. 2000). The deviation of the phase curve from the sinusoidal form is caused by the
arrangements of rings with accretion or depletion of chemical elements around the poles.
We demonstrate here only the very simple cases. The algorithm for the calculation of phase curves and line
profiles from the magnetic field distribution on the star’s surface is, of course, much more general and allows
arbitrary angles of sight and the overlay of an opacity layer on the surface.



170 GERTH, GLAGOLEVSKIJ

Fig. 1.Magnetic monopole with coordinates ϕ = 90◦, δ = 0◦, r = 0.5. The field is always

positive with a minimum at ϕ = 270◦, δ = 0◦. The line profile is asymmetric and has its deepest

point at the field minimum by phase 0.75.

Computer screen demonstration: Profile moving in phase of rotation.

Fig. 2. Central magnetic dipole with separated magnetic charges:

Radius-fraction Longitude Latitude Charge

r1 = 0.5 ϕ1 = 90o δ1 = +45o Q1 = +1

r2 = 0.5 ϕ2 = 270o δ2 = – 45o Q2 = – 1

The line profile changes the polarity at phases 0 and 0.5 with a nearly rectangular form and shows at the
poles an extreme asymmetry at phase 0.75 with a steep edge at the side turned away from the middle line.

(Screen demonstration).

Fig. 1 and Fig. 2 are images taken from the monitor screen, comprising the magnetic field map with the
phase curve of the integral magnetic field (Stokes V). The profile is shown at phase 0.75, marked by the
change of the phase curve from black to white.

The phase curves of the monopole and the dipole fields as background structure are put together for all
modes I, Q, U, V in Figs. 3 and 4.



PHASE CURVES AND LINE PROFILES OF STELLAR MAGNETIC FIELDS RELATED... 171

Fig. 3. Phase curves of Stokes I, Q, U, I for a magnetic monopole.

The curves of the parameters I and V show a similar behavior for the overall positive field strength. The
Q-curve has positive and negative parts because of the gradient of the field in direction of the longitude with
maxima and minima and zero at the pole and counter pole. The U-curve is always positive.

Fig. 4. Phase curves of Stokes I, Q, U, I for a magnetic dipole.

The first part of the dipole phase curves up to phase 0.5 shows principle agreement with the curves of
the magnetic monopole. In the second part the polarity is changing. Extrema and zero points are similarly
arranged. The U-curve has its extrema at the poles, which coincide there with the V-curve. The I- and Q-
curves are mirror-image-like symmetrical to phase 0.5, whereas the Q- and V-curves show rotational symmetry
with turning point at zero.
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Fig. 5.Series of geometrical line profiles for Stokes I, Q, U, V.

Abscissa: Definition range of frequency distribution.

Ordinate: phase 0 · · · 1, phase step 0.05.

Left panel: A virtual magnetic monopole is investigated for its Stokes profiles. The parameters I and V

reflect best the expected course of the field; Q shows a double wave with change of polarity; U is only

positive; I, U an V have the steep edge at the positive side. The line profiles are asymmetric and vary

heavily with the phase.

Right panel: Stokes profiles of a magnetic dipole consisting of two magnetic charges in the equatorial plane.

The parameters I and V reflect also for a dipole best the expected course of the field. Besides the

bumping-like double wave, at Q and U the variability of the wave length with a change of polarity and

asymmetry is conspicuous.

5 Superposition of elementary phase curves and line profiles

The theoretical essence of the modeling method of magnetic fields by sources and vortices is the reduction to
elementary units and the composition to big complexes by linear superposition. This holds for the magnetic
field itself, as outlined by Gerth et al. (2000). However, also the magnitudes and relations derived from the
magnetic field have the same property of superposability — as far as the integrals in equations (5) and (6)
are distributive like the summands of a sum, which is fulfilled for the integration of the radiation in view by
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the observer over the surface elements.
The convolution in these equations (5) and (6) makes the form of the phase curve with the line profile by
the distribution function ω. Both, phase curve and line profile, are closely connected: the phase curve is the
periodic variation of the center of gravity of the line profile in the course of phase.

We see in Figs. 3 and 4 that the left part of the four Stokes phase curves look very similar. If we put such
curves of a positive monopole at ϕ = 90◦ as a negative monopole on ϕ = 270◦, then we get the dipole phase
curves in Fig. 4 by addition. The monopole phase curve can be taken as the elementary one. But also Fig. 5
shows that the geometrical profiles of the four Stokes parameters are additive in the same manner, if we use
elementary monopole profiles.

The addition of elementary phase curves and profiles can comprise larger combinations, such as a dipole
with a positive and a negative magnetic charge. A precondition of the superposition is that all elementary
units belong to the same inclination angle i — being obvious for a definite star.

Last but not least, there is still another important superposition of elementary units: the composition of
effective line profiles out of the constituents of a Zeeman pattern. There are two possibilties:
1. Composition of the distribution function ω(b) coordinated to the δ-functions with the corresponding Landé-
factor and convolution with the profile function physically originated in the stellar atmosphere.
2. Total calculation of the field structure with phase curves and geometric profiles out of the sources and
summation with a shift in the spectrum coordinated to the Landé-factors, respectively, the effective z-values.

The superposition can be extended to a spectral region with different lines, enabling the calculation of
synthetic spectra.

6 The importance of the geometrically caused asymmetry

of the line profiles for the magnetic field measurement

The geometrical line profiles are usually asymmetric and deviate heavily from the normal (Gauss)distribution.
The maximum and the center of gravity do not coincide. In contrary to plausible imagination, a maximum
of the integral magnetic field strength is not given by the sight pole-on, but by the highest quantity of the
integral over the disk of all vectorial field components directed in sight to the observer. If all vectors in the
surface elements are nearly parallelly directed, then there would occur a sharp maximum; otherwise, in case
of wide-spread distribution of the field over the sphere the maximum would be embedded in a broad profile.

The profile form depends strongly on the local position on the star’s globe, the observer looks at. In the
course of the star’s rotation, the beam viewed by the observer slides along the latitude circle given by the
inclination angle i, producing thus a periodically varying geometrical profile with characteristic deviations
from symmetry. These characteristics are to be investigated for analyzing and identifying purposes of the
line-generating magnitudes.

The asymmetry of the line profiles has serious consequences for the measurement of magnetic fields by the
Zeeman-shift between the σ-components of the circularly polarized light. Every observer — so as the authors
did three decades ago (see Gerth et al. 1977) — is inclined to measure the line by the spectral position of
the maximum or by the best visual correlation of the profile with its mirror image. In that time we could not
explain the strange asymmetries of the line profiles seen on the oscilloscope screen. However, with our new
knowledge about the all in all natural asymmetry of the line profile, we can explain now the uncertainties of
our former measurements. They were not wrong at all, because they reveal at least a statistical tendency for
the magnitude of the magnetic field strength and its variation, but they suffer all from a very high scatter,
which is not only due to the graininess of the photographic plate.

In every case, the center of gravity of the profile gives the best spectral location of the line. Thus, broad
lines like those of hydrogen are less affected by the geometrical influence than the sharp metallic lines, because
their chare in the profile resulting by convolution is higher. This led to a biased selection of slowly rotating
stars, viewed nearly pole-on. However, what was thought as the correct measurement of sharp lines proves as
very intriguing and misleading. Nevertheless, the knowledge of the functional relation of the geometry and
the line profile could open a further source of information and would improve the correctness and reliability
of the measurement of stellar magnetic fields.
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