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with a diffraction grating
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1. Interference condition

As shown in Figure 1, the path difference between
interfering rays AB and A’B’ is )sin(sin βα+a where
a is the spacing between the repeated element in the
grating from which reflection (or refraction) occurs.

The interference condition is fulfilled when the path
difference is equal to multiples, m , of the wavelength of
the illuminating light. This gives rise to the grating
equation:

βαρλ sinsin +=m

where a/1=ρ  is the ruling density, m is the spectral
order and λ is the wavelength of light.

2. Dispersion

By differentiating with respect to
the output angle we obtain the
angular dispersion
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since dxdf =β2  where 2f is the
focal length of the camera (see
Figure 2).
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Figure 1: Interference of light by a
diffraction grating. Although this is
considered here as a transmission
grating, the same principle applies to
a reflection grating with suitable
care taken with the sign of the
angles.
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Figure 2. Illustration of the principle of a generic grating
spectrograph showing the definition of quantities used in the
text. To be consistent with the grating equation, α and β   have
the same sign if they are on the same side of the grating
normal.
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3. Resolving power

In standard textbooks, the resolving power, λλ ∆=R (where λ∆ is the resolution in
wavelength), is usually described as being given by the total number of lines in the
grating multiplied by the spectral order, hence

WmR ρ=*

(sometimes this is called the spectral resolution which can lead to confusion with λ∆ ).
But  in practice, the resolving power is determined by the width of the image of the slit, s,
projected on the detector, s’.

Before going further, it is useful to consider the invariance of Etendue in optical systems
(note that fibres and some other optical systems do not conserve Etendue but systems
made from normal optics – mirrors and lenses - do). This is normally stated as

 constant=ΩAn

where Ω is the solid angle of radiation incident at a surface of area A in a medium with
refractive index n. For our purposes, we may set 1=n (since we only consider optics in
air or vacuum) and consider a one-dimensional analogue:

constant'' == aa ωω

where ω  and a are the opening angle of the beam and the aperture dimension
respectively. To determine the width of the image of the slit formed on the detector, we
use conservation of Etendue, ''θθ ss = , where the angles at the slit and detector are

2211 '  and   fDfD == θθ  (Figure 3), so
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Figure 3: Projection of the slit (left) onto the detector (right).
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where the collimator and camera focal ratios are 2,1for   == iD
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i  respectively.

We now express the width of the image of the slit in wavelength units to determine the
spectral resolution of the spectrograph
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The length of the intersection between the collimated beam and the plane of the grating
(not necessarily the actual physical length of the grating) is

βcos
2D
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WFm
s

1ρ
λ =∆

The resolving power, defined as λ
λ

∆=R , is then

s
WFm

R 1ρλ
=

Note that this is independent of the details of the camera. This expression is useful for a
laboratory experiment since it is expressed in terms of the parameters of the experimental
setup: the collimator focal ratio, 1F , the grating parameters, m and ρ , the effective
grating length, W , and the physical slit width, s . Note that this expression may also be
given in terms of the incident and diffracted ray angles at the grating by substituting for

ρλm from the grating equation and for the grating length using the previous expression
for W .

For astronomy, it is more useful to express the resolving power in terms of the angular
slit width (projected on the sky), χ , and the telescope aperture diameter, TD . For this we
note that

Tfs χ=
and
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since the spectrograph is directly beam-fed from the telescope (i.e. no reformatting with
fibres is involved). Note that even if the slit is reimaged, the expression below still holds,
due to the conservation of Etendue in the reimaging optics.

Thus the resolving power is

TD
Wm

R
χ
ρλ

=

Note that *RR ≤ , the resolving power obtained with a finite slit width is always less than
the theoretical maximum which may be obtained with a infinitely narrow slit. This
condition is maintained for wavelengths satisfying

TDχλλ =< *

Thus, long-wavelength applications may approach the theoretical limit; in which case
they are said to be diffraction-limited. If so, the resolving power is independent of the slit
width and it becomes relatively straightforward for the spectrograph to be used with
different telescopes. For a non-diffraction-limited spectrograph, the resolving power
obtained would depend on the aperture of the telescope to which it was fitted.

Note also that the resolving power (when not diffraction-limited) is inversely
proportional to the telescope aperture diameter. To maintain the same resolving power
requires a proportional scaling up in W which implies that the spectrograph should scale
in direct proportion to the telescope.

4. Practical example

Consider a spectrograph with the following parameters:

500nm 100mm,m,8 arcsec, 0.5 mm,/1200,1 1 ====== λχρ DDm T

If the grating tilt is o20=α  then, from the grating equation,
o15)sinarcsin( =−= αρλβ m . Thus the illuminated grating length is

mm104cos/1 == βDW and the resolving power is 1560=R . This compares with the
diffraction-limited case where 124800* =R . Only at wavelengths longer than m19* µλ =
will the spectrograph be diffraction limited.
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Note that, in this example, the angle between the axes of the collimator and camera,
o5=−=Ψ βα  (remember the sign convention for these angles), which is probably

impractical.

5. Anamorphism

The ratio ss /' is the magnification of the spectrograph in the dispersion direction only. In
the direction along the slit the magnification is, in general, different. This gives rise to an
anamorphic magnification. To see this, we need to consider the shape of the beam exiting
from the grating. If the grating was a mirror (or was used in zero order, )0=m , naturally
the output and input beams would have the same circular shape.

From Figure 1, we can seen that the width of the output beam, as seen at the input
aperture of the camera, in the direction perpendicular to the slit (the dispersion direction)
is

βcos2 WD =

but the width in the direction parallel to the slit is

αcos1 WD =

Hence the anamorphic factor (Figure 4) is

α
β

cos
cos

1

2 ==
D
D

A

By conservation of Etendue, this also means that
magnification in the two directions is also different.
We have already seen that the magnification in the
dispersion direction is
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but in the along-slit direction, it is simply
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Thus, as might expect from the conservation of Etendue, the ratio of magnification
between the two directions is also given by the anamorphic factor since
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Figure 4: Anamorphism in the beam
shapes. Two examples are shown for
the output beam shape. Top: for the
normal to collimator configuration.
Bottom: for the normal to camera
configuration.
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There are two main configurations which may be used with blazed gratings, the normal
to camera configuration in which the normal to the grating is pointed generally towards
the camera, as illustrated in Figure 1. In this case αβ < so 1>A . The alternative is the
normal to collimator configuration in which αβ >  so .1<A  It is possible to satisfy the
grating equation for the same wavelength and spectral order in either configuration but
they are not equivalent when their detailed behaviour is examined. To do this, we need to
consider the question of blazing the grating.

6. Blazing

The grating is most efficient when the rays emerge from the grating as if by direct
reflection off the facets of which the grating is composed. This is known as  the blaze
condition. This can be understood by going back to the expression for the intensity from a
diffraction grating consisting of N rulings (see e.g. Fundamentals of Optics, Jenkins &
White):
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where φ2  is the phase difference
between the centre of adjacent
rulings and θ  is the phase
difference between the centre
and edge of a single ruling. The
second term in the expression is
known as the blaze function. As
can be seen from Figure 5, its
effect is to modulate the
interference pattern for a single
wavelength. Unfortunately, the
maximum, when 0=θ , occurs
for zero order, 0=m . For practical spectroscopy, we would like to shift the maximum of
the blaze function to occur when, say, 1=m  for some useful wavelength. This can be
done by profiling the grating surface so that each periodic unit adopts the shape shown in
Figure 6. These facets are tilted at an angle γ  to the plane of the grating.  The phase
difference between centre and edge of the facet is then
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Figure 5: Illustrative plot of diffracted intensity at a
single wavelength versus angle labeled by the spectral
order.
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From Figure 6, it can be seen that

βγγα −=−= ri   and  

(Recall the sign convention that α
and βhave the same sign if they are on the
same side of the grating normal.) So the
blaze peak condition ( 0=θ ) occurs when

ri = , which is equivalent to simple
reflection from the facets, and

γβα 2=+

Making use of the identity,

2
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yxyx
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−+=+ , we can

rewrite the grating equation at the blaze
condition as

2
cossin2

Ψ= γλρ Bm

since βα −=Ψ , where Bλ is the wavelength for which the blaze condition is satisfied
and Ψ is the collimator-camera angle which is fixed by the design of the spectrograph
(Figure 1).

Figure 7 shows an idealised blaze function for a
grating blazed at wavelength Bλ in first order.
It is useful to note (Astronomical Optics,
Schroeder) that, in the ideal case, the efficiency
of a grating drops to 40.5% of the maximum at
wavelengths on either side of the blaze peak of
(approximately)
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Figure 6: Illustration of blaze condition for
reflection grating.
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Figure 7: Typical relationship between efficiency
and wavelength for a blazed diffraction grating.
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for large m. (This is very similar to the expression for the free spectral range which gives
the wavelength range within a single order which may be obtained without being
overlapped by light from different orders.)

However, real gratings depart from this idealised situation, especially when different
polarisation states are considered and when the facet size is comparable with λ . Note
also that the behaviour in higher orders is subject to the physical requirement that the sum
of the blaze functions of all orders must not exceed unity. In practice, as indicated in
Figure 7, the peak efficiency decreases with increasing order. The actual blaze profile
which may be obtained is a complicated matter requiring consideration of Maxwell’s
equations and is beyond the scope of this paper.

For the Littrow configuration, 0=Ψ (the incident and diffracted rays are parallel), so

γρλ sin2=L
Bm

So the resolving power in the Littrow configuration (only) can be expressed as
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The relationship between non-Littrow and Littrow blaze conditions is

2
cos

Ψ= L
BB λλ

Note that most catalogues of gratings give L
Bλγρ  and , only, so it is necessary to transform

from the Littrow case to the actual geometry of the spectrograph. Furthermore the
efficiency as a function of wavelength is usually given for a near-Littrow configuration
( 0≈Ψ ). Generally the efficiency of a grating declines slightly with increasing Ψ .

7. Which configuration is best?

We are now in a position to analyse the difference between the normal-to-camera and
normal-to-collimator configurations noted earlier.

It can be seen from Figure 8, that the two configurations can both satisfy the blaze
condition since specular reflections are obtained from the groove facets. In fact, these two
configurations are equivalent to using the same grating in positive and negative orders
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but exchanged end-to-end. To see this, the blaze wavelengths in the +1 and –1 orders are
found to be

( ) ργλ /2/cossin21 Ψ=+
B and ( ) ργλ /2/cossin21 Ψ−=−

B

so 11 −+ −= BB λλ  unless

Ψ−→Ψ π2 or γγ −→

Both transformations are equivalent to turning the grating around end-to-end as
illustrated in Figure 8.

So we have established that both configurations are indeed satisfactory in terms of
satisfying the grating equation and the blaze condition. But they differ in the following
respects:

The normal-to-camera configuration has a dilated beam on the grating so the increased
value of W will result in a higher spectral resolution. At the same time, the beam

Order m=+1   grating normal towards camera

Order m=–1    grating normal towards collimator

grating normal

Ψ

cameracollimator

grating normal Beam dilated   - higher spectral resolution
                        - larger wavelength range
                        - smaller oversampling

Beam squeezed - lower spectral resolution
                           - smaller wavelength range
                           - larger oversampling

red blue

red blue grating
beam

Ψ

cameracollimator

Ruling
direction

Figure 8: Illustration of the use of the same grating in the normal to camera (top) and normal to
collimator (bottom) configurations.
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anamorphism will result in a lower magnification in the dispersion direction. Thus the slit
will project onto fewer detector pixels (s’ is smaller). This will reduce the oversampling
in the spectrum (generally a bad thing) but also increase the wavelength range that will fit
on the detector at any one time (a good thing) since the linear dispersion is larger since β
is smaller.

The normal-to-collimator configuration has a squashed beam on the grating leading to
lower spectral resolution . The magnification is greater in the dispersion direction leading
to higher (better) oversampling but a smaller simultaneous wavelength range since the
linear dispersion if smaller.

Which configuration is best depends on the details of the spectrograph (for example the
slit width and camera speed) and the requirements of the observation to be made. In most
case, the normal-to-camera configuration is to be preferred but this may not always be the
case. For this reason, many spectrographs have the capability to use their gratings in
either configuration. However, don’t forget to reverse the sense of the grating when
changing configuration, otherwise you could find yourself working very far from blaze
with a consequent large reduction in efficiency – this happens quite frequently!

8. Grisms

A grism is a combination of transmission grating and prism (Figure 9). Naturally, the
grating equation applies to this situation but with the modification that the refractive
index of the medium, n, (where
we assume that the indices of the
prism glass and the resin in which
the grating is replicated are the
same, RG nnn == ) must be

included:

βαρλ sin'sin nnm +=

Note that the ruling density, ρ , is
defined in the plane of the grating,
not the plane normal to the optical
axis of the spectrograph. For the
special case shown in Fig 9 where
the input prism face and the facets
are both normal to the optical axis,
and where the external medium is
air, 1'=n , the most useful
configuration is where 0=δ  , i.e.
the light is undeviated, allowing
the camera and collimator to be in
line. Here αβ −=  so
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Figure 9: Typical configuration of a grism.
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φρλ sin)1( −= nm U

Note that, for typical materials ( 5.1=n ), there is roughly a factor 4 difference in the
blaze wavelength for the same grating used in reflection or as part of a grism!

The advantage of this configuration is that the monochromatic image of the target will
appear at the same location as a direct image obtained with the grism removed.

This is also the blaze condition since the phase difference between the centre and edge of
a facet is zero ( 0=θ ), since rays emerging from the centre and edge of a facet pass
through identical thickness’ of glass and are parallel at all times. So we may set, for the
special configuration described, UB λλ = .

Working through the same equations as for the reflection grating, we find, as before, that
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Since the grating length is φcos
1DW = , we can also express the resolving power as
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Simple considerations of geometry show that the sizes of the input and output beams in
the dispersion direction must be the same. Thus the anamorphic factor is unity. This
allows grism-based spectrographs to use a smaller camera than that necessary for a
spectrograph employing reflection gratings in a non-Littrow configuration. However, it
should be noted that the efficiency of grisms with high ruling density, /mm600≥ρ , is
lower that the equivalent reflection grating due to groove shadowing and other effects.

It is also useful to consider the case where the facet groove angle ,γ , differs from the
prism vertex angle, φ , and where the index of the resin and prism glass are different.
Then the blaze wavelength is no longer the same as the undeviated wavelength.

γφγγφρλ sinsinarcsinsincossin −
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If we set φγ =  (as shown in Figure 9), the expression simplifies to:
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To take an example actually encountered with LDSS-2, a grism with mm/600=ρ  and

vertex angle o30=φ  (equal to the facet groove angle) was replicated on a glass prism
with index 52.1=Gn . This should have yielded a blaze wavelength nm433== UB λλ if
the resin and glass indices had been well matched. But at the first attempt, a resin
with 60.1 =Rn  was used. This caused  the blaze to be shifted red-wards by

nm66* =∆λ to 500nm so the grism was remade with a better choice of resin.
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