Environmental imprints in field and cluster dwarf early-types as seen by SAURON

Agnieszka Ryś
(ESO Garching / IAC Tenerife)

in collaboration with:

 Jesús Falcón Barroso (IAC), Glenn van de Ven (MPIA), Mina Koleva (UGent), Thorsten Lisker (ZAH), Alexandre Vazdekis (IAC), Reynier Peletier (UGroningen)

EWASS SpS3, La Laguna, June 22, 2015
Galaxy classification schemes

From purely morphological classification to systems reflecting true physical properties of galaxies:

↑ Hubble 1926
Kormendy+ 2012 ↗
Cappellari+ 2013 →
Dwarf early-types: more complex than we used to think

Wealth of substructure:
- spiral arms, bars, disks, lenses, nuclei
- kinematically decoupled cores, rotating & non-rotating
- spread in ages and metallicities

Shallow potential wells (low masses and densities)
- important testbeds for theories of galaxy formation & evolution

Lisker + 2006
Galaxy harassment
- high-speed encounters with other galaxies & tidal heating resulting from the interactions with the cluster’s potential well
- can remove stellar and (more efficiently) dark mass
- can change morphology
- lowers angular momentum

Ram-pressure stripping
- interactions between galaxies and the intergalactic medium
- quickly removes gas & quenches star formation
- preserves angular momentum
dEs – finding progenitors

Not a straightforward task:

- observed nearby – *present-day* analogs of dE progenitors
- high-z observations too demanding for these low SB systems
- detailed studies of cluster dEs long hampered by the lack of high-quality data

Recent advances in studies of early-type galaxies

- giant early-types studied in detail in 3D by the SAURON / ATLAS3D teams
- logical next step was to extend this analysis to low-mass systems
Our sample: 12 Virgo and field dEs

- Virgo Cluster: closest large concentration of dEs
- Bright dEs of varying ϵ, level of substructure, local density
- Most with long-slit data already available
- Covered a range of ϵ and (projected) distances from M87
Stellar velocity maps - diversity everywhere

- **kinematic twist**
- **round rotator**
- **flat non-rotator**
- **round non-rotator**
- **flattened disky rotator**
- **kinematically decoupled core**

(Ryś+ 2013b)
Angular momentum of dEs is much lower than of their presumed late-type progenitors

(Ryś+ 2014)
Rotation curves of dEs are much steeper than those of late-type galaxies

\[\frac{V_{\text{circ}}}{V_{\text{H\alpha}}} \]

\[\frac{r}{R_{\text{opt}}} \]

\[V_{\text{circ}} \text{ or } V_{\text{H\alpha}} \text{ (km/s)} \]

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \]

\[Catinella+06, V_{\text{H\alpha}} \]

\[this \ work, V_{\text{circ}} \]

\[Swaters+09, V_{\text{HII}} \]

\[this \ work, V_{\text{star}} \]

\[dE V_{\text{circ}} \text{ & late-type } V_{\text{H\alpha}} \]

\[dE V_{\text{circ}} \text{ & dIrr } V_{\text{HI}} \text{ profiles} \]

(Ryś+ 2014)
variety of properties suggests formation/evolution scenario acting stochastically

dE have lower λ_R and steeper dE V_{circ} profiles than the present-day analogues of their presumed late-type progenitors,

transformation mechanism needed that is able to lower angular momentum + account for increased stellar concentration,

transformation due to tidal harassment – unless the dE progenitors were already compact and had lower angular momenta at higher redshifts.
Ages, Z, mass & light weights of both young and old components:
- old component present in most galaxies
- younger component typically more centrally concentrated than the old one

→ some dwarfs could have contributed to the build-up of massive galaxies’ stellar haloes
→ secondary burst of SF or SF still strong at \sim a few Gyr

(Å. Ryś+ 2015)
VCC 1431 - a genuinely old galaxy?

- no evidence for populations $\sim<10$ Gyr
- no substructure (Janz+ 2013) \rightarrow no tell-tale sign of interactions
- centrally located in Virgo
- lowest λ_R and steepest V_{circ} profile

If infallen:

- gas stripped before entering the cluster (in group?) \rightarrow SF quenched
- then tidally harrassed \rightarrow made more compact & had its λ_R lowered

(Agnieszka Ryś 2015)
ID 0918 - a merger remnant?

- break in young and old population profiles at KDC radius
- merger, gas lost earlier – no further SF
- isolated location – encounter highly improbable

\[\Gamma_y = 0.21^{+0.39}_{-0.39} \]
\[\Gamma_o = 0.12^{+0.13}_{-0.13} \]

\[\Gamma_y = 1.01^{+0.51}_{-0.51} \]
\[\Gamma_o = -0.37^{+0.56}_{-0.56} \]

(Ryś+ 2015)
we are able to recover 2-SSP SFHs from the limited SAURON λ range thanks to high data quality

for the majority of objects SF either still strong at a few Gyr of age or secondary SF burst ~at that age

in agreement with the proposed dE formation scenario where tidal harassment drives the remaining gas inwards and induces a secondary star formation episode.

we find a candidate "relic" galaxy + an object where kinematic and stellar population properties are correlated (merger remnant?) – illustration of the SFH variety of dEs
Summary

we confirm & add to the variety of dE kinematic and stellar population properties,

we show that dynamical properties of dEs favor the tidal harassment scenario (able to increase compactness, lower angular momentum & DM fraction)

we see that SF activity was still strong a few Gyr ago or that the galaxies experienced a secondary SF burst, compatible with the above scenario
we confirm & add to the variety of dE kinematic and stellar population properties,

we show that dynamical properties of dEs favor the tidal harassment scenario (able to increase compactness, lower angular momentum & DM fraction)

we see that SF activity was still strong a few Gyr ago or that the galaxies experienced a secondary SF burst, compatible with the above scenario
we confirm & add to the variety of dE kinematic and stellar population properties,

we show that dynamical properties of dEs favor the tidal harassment scenario (able to increase compactness, lower angular momentum & DM fraction)

we see that SF activity was still strong a few Gyr ago or that the galaxies experienced a secondary SF burst, compatible with the above scenario
Future work

Doubled SAURON Virgo sample
- stronger constraints wrt dwarf-giant scaling relations

Expanding the sample to different environments
- cosmic voids
- other nearby clusters (Fornax, Coma)

Making simulations and observations meet:
- looking “through the eye of SAURON” at a new suite of high-resolution simulations of dEs in the Virgo cluster
- → come and see my talk @ 12:15 on Thursday (Symposium 2)