Kinematics of interacting galaxies A 3D-view from the CALIFA survey

ArXiv: 1506.03819

Jorge K. Barrera-Ballesteros

Begoña Garcia-Lorenzo Jesús Falcón-Barroso and the CALIFA collaboration

Mapping the kinematics in nearby systems

- Detailed analysis of individual systems.
- Most of these studies focus on a particular component of interacting system: stars, ionized, neutral or molecular gas (e.g., Colina+05, Wild +14, Iono+05).
- From rotational patterns to complex velocity fields.

lonized gas Stars

HST-image

CALIFA Maps Vel. Dispersion Velocity 80 Δ v (km/s) σ_ν (km/s) ∆ v (km/s)

Wild+2014

Mapping the kinematics in nearby mergers

- Bellochi+2013: (U)LIRGs at different interacting stages (N < 60).
- Velocity field from $H\alpha$ emission line.
- ~ 70% of the sample dominated by rotation.

Mapping the kinematics in nearby mergers

- How the internal structure (kinematics) of galaxies is affected as the merger evolves?
- Do the stellar and ionized gas components evolve differentially?
- Quantifying the level of 'distortions' produced induced by the interactions using a homogeneous control sample of non-interacting galaxies.

The CALIFA survey

Sánchez+2012, Husseman+2013, García-Benito+2015

- 937 galaxies from SDSS/DR7 of all Hubble Types.
- Nearby galaxies selected by size $(45" < D_{25} < 80"; 0.005 < z < 0.03).$
- PMAS/PPAK-IFU @ CAHA 3.5m.
- Wide range of stellar masses $(9.4 < log(M_{star}/M_{\odot}) < 11.4)$.
- > 450 galaxies observed.

@ $2" \sim 0.5-1.0 \text{ kpc}$

http://califa.caha.es/

The CALIFA survey

Sánchez+2012, Husseman+2013, García-Benito+2015

CALIFA interacting galaxies

103 galaxies at different stages of merger + 80 non-interacting galaxies as control sample (Barrera-Ballesteros+2014)

An "assumption-free" method

Kinematic Centre

(García-Lorenzo+2015)

For a pure-rotational disc, its gradient peak is located at the optical nucleus.

An "assumption-free" method

Kinematic PA

An "assumption-free" method

Kinematic PA

- Average kinematic PA (PA_{kin}).
- Radial deviation of kinematic PA (δPA_{kin}) .
- Derived for both kinematic sides.
- + Morphologial PA (Ellipse fitting)

Morpho-kinematic PA misalignments

 $\Psi_{\text{morph-kin}} = | PA_{\text{morph}} - PA_{\text{kin}} |$

43% of interacting sample with $\Psi_{\text{morph-kin}}$ > 21 degrees.

52% of interacting sample with $\psi_{\text{morph-kin}}$ > 22 degrees.

Morpho-kinematic PA misalignments

 $\Psi_{\text{morph-kin}} = | PA_{\text{morph}} - PA_{\text{kin}} |$

Enhancement of $\psi_{morph-kin}$ at the <u>merger</u> stage.

Stellar-Gas Kinematic PA misalignments

 $\Psi_{gas-stars} = | PA_{gas} - PA_{stars} |$

43% **(28/66)** of interacting sample with $\psi_{gas\text{-stars}} > 16$ degrees.

18% (12/66) of interacting sample with $\psi_{gas\text{-stars}}$ > 30 degrees.

Stellar-Gas Kinematic PA misalignments

$$\Psi_{gas-stars} = | PA_{gas} - PA_{stars} |$$

Large misalignments observed mostly in early-type galaxies, at different stages of interaction.

Stellar-Gas Kinematic PA misalignments

Summary

- Covering a wide range of environmental and internal parameters, the CALIFA survey allow us to compare the 2D kinematic properties of galaxies at different stages of interaction with non-interacting galaxies.
- We develop an "assumption-free" method to characterize homogeneously the stellar and ionized gas velocity fields from those two samples.
- We trace the impact of interactions in the internal structure of galaxies:
 - Larger morpho-kinematic misalignments comparing to control sample in particular for galaxies with evident signatures of interaction.
 - Interacting galaxies show a large impact changing the internal structure of galaxies:
 43% (28/66) shows stellar-gas kinematics larger than non-interacting sample.

For more about physical properties of the CALIFA interacting galaxies see the talk:

Central star formation and chemical enrichment in CALIFA interacting galaxies

S8 - 11:45 am