Michela Mapelli^{1,2,3,4}

¹ INAF, Padova
² INFN, Milano
³ FIRB2012 fellow
⁴ MERAC prize2015

Back to the green valley: how to rejuvenate an S0 galaxy through minor mergers

COLLABORATORS: Roberto Rampazzo, Antonietta Marino, Alessandro Trani, Brunetto Ziosi, Mario Spera, Alessandra Ferri, Andrea Moretti

EWASS 2015, Sp3, Tenerife, Canary Islands, June 22nd 2015

OUTLINE

1. Why do we care about star formation in S0 galaxies?

2. State-of-the art simulations

- 3. My models for minor mergers
 - → gas rings
 - → stellar and gaseous halos
 - → star formation

4. Discussion: how many minor mergers?

5. Conclusions

1. SO galaxies are peculiar objects: have disc but are mainly gas poor (early type galaxies with a disc!)

2. star formation rate(SFR) is >0 in manyS0 galaxies

Most ellipticals are read and dead

Most spirals are blue and alive

Half of S0 galaxies are in between (GREEN VALLEY)

STAR FORMATION FADING (or recycling)?

ACCRETION OF FRESH GAS (from mergers or accretion)?

- 1. Why do we care about star formation in S0 galaxies?
- 3. if we consider only S0 with SF (\sim 0.5 Msun yr⁻¹, Salim+ 2012), most have RINGS (or ring-like structures)
- rings are EXTENDED (>25 kpc) or SMALL (<15 kpc)
- ~ 50% of rings are in BARRED galaxies (controversial)

HOW DO RINGS FORM??

Salim & Marino+ 2011, Salim+ 2012, Laurikainen+ 2013

From Marino et al. 2011

HOW DO RINGS FORM??

INTERNAL MECHANISMS:

→ fading star formation might proceed in rings

→ SECULAR EVOLUTION, e.g. a BAR favours accumulation of gas in resonances

can be internal mechanism but also support of an external mechanism!

inner _ Lindblad

corotation

HOW DO RINGS FORM??

EXTERNAL MECHANISMS:

 → accretion of smooth gas (e.g. filaments or cooling halo) from environment

→ mergers with gas-rich satellites

HOW DO RINGS FORM??

INTERNAL MECHANISMS:

- → fading star formation might proceed in rings
- → SECULAR EVOLUTION, e.g. a BAR favours accumulation of gas in resonances

EXTERNAL MECHANISMS:

- → accretion of smooth gas (e.g. filaments or cooling halo) from environment
- → mergers with gas-rich satellites

According to Salim+ 2012

Salim+ 2012 predict accretion to be more important than minor merger because rings are smooth and signs of disturbance rare

HOW DO RINGS FORM??

Salim+ 2012 predict accretion to be more important than minor merger because rings are smooth and signs of disturbance rare

DO WE EXPECT VISIBLE DISTURBANCES FROM MINOR MERGERS?

HOW LONG DO THESE DISTURBANCES LAST?

2. State-of-the-art simulations

It is hard to resolve details of minor mergers in cosmological simulations (dwarf galaxies are small)!

→ collisions between equilibrium-models of galaxies (Widrow & Dubynski 2005)

Navarro, Frenk & White DM profile

$$\rho(r) \propto r^{-1} (1+r)^{-2}$$

Hernquist bulge

$$\rho(r) \propto r^{-1} (1+r)^{-3}$$

Exponential disc

$$\rho(R,z) \propto \exp(-R) \operatorname{sech}^2(z)$$

2. State-of-the-art simulations

→ nearly radial orbits (eccentricity ~1, marginally unbound) cosmological simulations indicate that most mergers occur with eccentricity ~1 and large impact parameter (eg Khochfar & Burkert 2006)

GIVE UP ON THAT SISSI

LIGHTER FLUID

→ N-body/smoothed particle hydrodynamics (SPH) gasoline (Wadsley+ 2004)

ChaNGa (Jetley+ 2008, 2010; Menon+ 2014)

Star formation is a stochastic process:

gas particle denser than 0.1 cm^-3, in an overdense region, in a converging flow, and Jeans unstable collapses to a star if probability p is sufficiently large

enforces Schmidt law

Core-collapse supernovae: blast-wave model

Only thermal feedback
Gas does not cool down for a while after SN (Stinson+ 2006)

No gas in S0
Gas mass in satellite~2x108 Mo
Mass ratio 1/20
Eccentricity ~1
Marginally unbound

Different orbits:

COPLANAR orbits:

run A: impact parameter~10kpc retrograde

No gas in S0
Gas mass in satellite~2x108 Mo
Mass ratio 1/20
Eccentricity ~1
Marginally unbound

Different orbits:

COPLANAR orbits:

- run A: impact parameter~10kpc retrograde
- run B: impact parameter~10kpc prograde

No gas in S0 Gas mass in satellite~2x108 Mo Mass ratio 1/20

Eccentricity ~1
Marginally unbound

Different orbits:

COPLANAR orbits:

- run A: impact parameter~10kpc retrograde
- run B: impact parameter~10kpc prograde
- run E: impact parameter~30kpc retrograde

MM, Rampazzo, Marino 2015

No gas in S0 Gas mass in satellite~2x108 Mo Mass ratio 1/20 Eccentricity ~1 Marginally unbound

Different orbits:

COPLANAR orbits:

- run A: impact parameter~10kpc retrograde
- run B: impact parameter~10kpc prograde
- run E: impact parameter~30kpc retrograde
- run F: impact parameter~30kpc prograde

MM, Rampazzo, Marino 2015

No gas in S0 Gas mass in satellite~2x108 Mo Mass ratio 1/20 Eccentricity ~1 Marginally unbound

Different orbits:

COPLANAR orbits:

- run A: impact parameter~10kpc retrograde
- run B: impact parameter~10kpc prograde
- run E: impact parameter~30kpc retrograde
- run F: impact parameter~30kpc prograde

NON-COPLANAR:

runC: satellite is ~45 DEG impact parameter~10kpc

MM, Rampazzo, Marino 2015

MM, Rampazzo, Marino 2015

No gas in S0 Gas mass in satellite~2x108 Mo Mass ratio 1/20 Eccentricity ~1 Marginally unbound

Different orbits:

COPLANAR orbits:

- run A: impact parameter~10kpc retrograde
- run B: impact parameter~10kpc prograde
- run E: impact parameter~30kpc retrograde
- run F: impact parameter~30kpc prograde

NON-COPLANAR:

- runC: satellite is ~45 DEG impact parameter~10kpc
- runD: satellite is ~90 DEG impact parameter~10kpc

3. Models for minor mergers: two examples

run A:
coplanar
impact parameter~10kpc

MOVIE run A

retrograde

runD:

non-coplanar → satellite is ~90 DEG impact parameter~10kpc

MOVIE run D

Mass ratio 1/20 Eccentricity ~1

Different orbits:

COPLANAR orbits:

- run A: impact parameter~10kpc retrograde
- run B: impact parameter~10kpc prograde
- run E: impact parameter~30kpc retrograde
- run F: impact parameter~30kpc prograde

NON-COPLANAR:

- runC:satellite is ~45 DEG
- runD: satellite is ~90 DEG

Gas mass in the innermost ~ 15 kpc

Gas mass in a ring

In all runs gas is stripped in $<\sim$ 3 Gyr \sim 1/10 of total gas is accreted in the inner parts of S0

EXCEPTION: run E with impact parameter 30 kpc and retrograde

Ring is SHORT-LIVED in prograde runs and if inclination~45 DEG

Ring is LONG-LIVED in retrograde run A And in POLAR run D

RING PRESERVES INCLINATION OF SATELLITE'S ORBIT

LONG-LIVED POLAR RING If inclination 90 DEG !!!

But disappears early if ~45 DEG

WE FIND RETROGRADE RINGS AND POLAR RINGS: NOT SUPPORTED BY BAR!

What happens in the outer parts of the SO?

Long-lived shells

Shell density is very low (<10⁻⁵ times density of disc)

What happens in the outer parts of the SO?

Most satellite stars are stripped but not accreted by S0

HALO!

Most gas is stripped but not accreted by S0

HOT HALO!

STAR FORMATION HISTORY:

Merger triggers long-lived episode of star formation at low rate

- first burst of the satellite
- then burst in the S0,lasting for >8 Gyr

4. Discussion: how many minor mergers?

Which % of rejuvenated S0s minor mergers account for??

Millennium simulation + semi-analytical models: 10-30% of S0 galaxies suffer minor merger at z~0

+our simulations show that SF episode is long lived

- → 10-30% S0 galaxies show signs of rejuvenation today
- → minor mergers can account for most S0 rejuvenation episodes

(Springel+ 2005; Bertone & Conselice 2009)

4. Discussion: how many minor mergers?

Which % of rejuvenated S0s minor mergers account for?? BUT..

- there is some friction between cosmological simulations and major merger data (Bertone & Conselice 2009)
 Are we sure that minor merger estimates are ok?
- ~25% of all local galaxies show signatures of minor mergers but only 1/10 of SF rate can be accounted for by minor mergers (Sancisi+ 2008, Di Teodoro & Fraternali 2014, but sample of LATE type galaxies)
- large uncertainties in observations:
- ~16 to 56 % ETGs have shells (Reduzzi+ 1996, Duc+2014; Seiter & Schweitzer 1990)

only ~16% ETGs have signs of minor mergers (Duc+2014)

5. CONCLUSIONS:

- About 50% of S0 galaxies have SF: populate green valley
- Is this fading SF or rejuvenation? It might be both...
- Minor mergers might trigger formation of long-lived rings of gas, gas haloes, shells of stars, and episodes of star formation (MM, Rampazzo & Marino 2015)
- Rings form especially if satellite orbit is RETROGRADE or POLAR → important to understand the role of bars
- Shells and gas halos are ubiquitous and long-lived but faint
- Combining our results with cosmological simulations we find that minor mergers can account for most (all?) rejuvenated S0s but several caveats might be taken into account

My team:

Dr. Mario Spera Postdoctoral fellow

Alessandra Ferri, Master student

Andrea Moretti, Master student