Creating S0s with major mergers: a 3D view

Miguel Querejeta
Max Planck Institute for Astronomy

with Carmen Eliche-Moral, Alejandro Borlaff, Trinidad Tapia, Jaime Zamorano, Jesús Gallego
Glenn van de Ven, Jesús Falcón-Barroso, Mariya Lyubenova, Jairo Méndez-Abreu, Marie Martig
Introduction: Are S0s faded spirals?

- Lenticulars (S0s) form a sequence parallel to spirals
 \[\text{Laurikainen et al. (2010), Cappellari et al. (2011), Kormendy & Bender (2012)}\]

Hubble’s tuning fork (1936)

ATLAS3D comb (2011)
Introduction: Are S0s faded spirals?

- Lenticulars (S0s) form a sequence parallel to spirals
 \textit{Laurikainen et al. (2010), Cappellari et al. (2011), Kormendy & Bender (2012)}

- Ram-pressure stripping in clusters can transform spirals into S0s
 \textit{Aragón-Salamanca et al. (2006), Croll & Kenney et al. (2007)}

- But S0s as common in groups as in clusters: other mechanisms? mergers?
 \textit{Wilman et al. (2009), Bekki & Couch (2011)}

- Can bulge-disc coupling observed in S0s rule out (major) mergers?
 \textit{Laurikainen et al. (2010)}

- Gas-rich discs can sometimes survive major mergers
 \textit{Springer & Hernquist (2005), Hopkins et al. (2009)}
GalMer simulations of galaxy mergers

- GalMer N-body simulations of galaxy mergers (tree-SPH technique)

 Chilingarian et al. (2010) [Combès, Di Matteo, Melchior, Semelin]

- Identify S0s resulting from major mergers:
 Discs first destroyed, but soon (~1 Gyr) rebuilt
GalMer simulations of galaxy mergers

- GalMer N-body simulations of galaxy mergers (tree-SPH technique) [Chilingarian et al. (2010)]
- Identify S0s resulting from major mergers:
 Discs first destroyed, but soon (~1 Gyr) rebuilt

Simulation gSa+gSd, $i=75^\circ$, peric. = 16 kpc, $v_0=200$ km/s, prograde
RGB synthetic images (red=K band; green=g; blue=NUV)
Bulge-disc coupling in S0s

Disc scale-length

Disc h_d (kpc)

Observations:
- Laurikainen+10
 - S0
 - S0/a+Sa
- Laurikainen+04
 - Sa–Sc
 - Sc–Sd

GalMer progenitors:
- Sa
- Sb
- Sd

GalMer mergers:
- remnant

QUEREJETA et al. (2015a)
Bulge-disc coupling in S0s

Disc h_d (kpc)

Bulge effective radius

Bulge r_e (kpc)

Observations:
Laurikainen+10
- S0
- S0/a+Sa

Laurikainen+04
- Sa–Sc
- Sc–Sd

GalMer progenitors:
- Sa
- Sb
- Sd

GalMer mergers:
- remnant

QUEREJETA et al. (2015a)
Bulge-disc coupling in S0s

QUEREJETA et al. (2015a)
Bulge-disc coupling in S0s

Observations:
Laurikainen+10
- S0
- S0/a+Sa

Laurikainen+04
- Sa–Sc
- Sc–Sd

GalMer progenitors:
- Sa
- Sb
- Sd

GalMer mergers:
- remnant

QUEREJETA et al. (2015a)
Bulge-disc coupling in S0s

Observations:
- Laurikainen+10
 - S0
 - S0/a+Sa
- Laurikainen+04
 - Sa–Sc
 - Sc–Sd

GalMer progenitors:
- Sa
- Sb
- Sd

GalMer mergers:
- remnant

QUEREJETA et al. (2015a)
Bulge-disc coupling in S0s

Observations:
- Laurikainen+10
- Laurikainen+04

GalMer progenitors:
- Sa
- Sb
- Sc
- Sd

GalMer mergers:
- remnant

QUEREJETA et al. (2015a)
Bulge-disc coupling in S0s

Photometric decomposition of merger remnants

Observations:
- Laurikainen+10
 - Orange: S0
 - Yellow: S0/a+Sa
- Laurikainen+04
 - Green: Sa–Sc
 - Blue: Sc–Sd

GalMer progenitors:
- Orange: Sa
- Green: Sb
- Blue: Sd

GalMer mergers:
- Black diamonds: remnant

QUEREJETA et al. (2015a)
Bulge-disc coupling in S0s

Observations: Laurikainen+10
- S0
- S0/a+Sa

Laurikainen+04
- Sa–Sc
- Sc–Sd

GalMer progenitors:
- Sa
- Sb
- Sd

GalMer mergers:
- remnant

QUEREJETA et al. (2015a)
Bulge-disc coupling in S0s

Observations:
- Laurikainen+10
 - Orange circles: S0
 - Yellow diamonds: S0/a+Sa
- Laurikainen+04
 - Green squares: Sa–Sc
 - Blue triangles: Sc–Sd

GalMer progenitors:
- Yellow diamonds: Sa
- Green squares: Sb
- Blue triangles: Sd

GalMer mergers:
- Black diamonds: remnant

QUEREJETA et al. (2015a)
Photometric results

- Bulge-disc coupling in agreement with observations:
 - $R_e - h_d - B/T - n - M_k(\text{bulge}) - M_k(\text{disc})$ planes

- Remnant bulges follow observed photometric scaling relations:
 - Kormendy relation, Fundamental Plane...

- Remnant discs obey observational scaling relations as well:
 - $h_d - M_k(\text{disc}) - \mu_{0,d}$

- Also scaling relations for anti-truncated discs in S0s

...but what about \textit{kinematics}?
(the 3D view)
3D kinematic comparison with CALIFA

Angular momentum within R_e

Light concentration

λ_{Re}

R_{90}/R_{50}

QUEREJETA et al. (2015b)

VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)
VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)
VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)
VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)
VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)
VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)
VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)

VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)
VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)
VAN DE VEN et al. (in prep.)
3D kinematic comparison with CALIFA

QUEREJETA et al. (2015b)
VAN DE VEN et al. (in prep.)
Summary

Identify S0-like remnants from major mergers of spirals in GalMer

- Disc but no spiral arms
- Dynamically relaxed
- SFR, gas content typical of S0s

Realistic images + Photometric decompositions

Simulate IFU CALIFA strategy