# NEW RESULTS ON COUNTER-ROTATING GALAXIES FROM 3D SPECTROSCOPIC PROJECTS

Enrico Maria Corsini

Dipartimento di Fisica e Astronomia

Università di Padova

La Laguna, 22<sup>nd</sup> June 2015

#### **OUTLINE**

# **♦ Topics**

- Definition
- Classification
- Size
- Components
- Morphological signatures
- Kinematic signatures
- Statistics
- Stellar populations
- Formation scenarios

#### ♦ Focus on

- Normal and bright galaxies
   (interacting galaxies = Barrera-Ballesteros, dwarfs = Ryś)
- Main-plane decoupled components
   (off-plane components = Coccato, Sil'chenko)

### **DEFINITION**

Counter-rotation is observed when two galactic components have their angular momenta projected antiparallel onto the sky plane.

- ♦ intrinsic: the components rotate around the same axis



NGC 4365 – E3 isolated core

Surma & Bender (1995)



# **CLASSIFICATION**

# Counter-rotation occurs in a variety of forms

- ♦ gas vs gas: two gaseous disks counter-rotate (e.g., NGC 7332)





NGC 4546 – SB0 gas vs stars counter-rotation



NGC 4546 – SB0 gas vs stars counter-rotation



Galletta (1987)



NGC 4546 – SB0 gas vs stars counter-rotation

# **STARS**





Galletta (1987)

**GAS** 



# **STARS**



NGC 4546 – SB0 gas vs stars counter-rotation



Galletta (1987)

GAS

# **CLASSIFICATION**

# Counter-rotation occurs in a variety of forms

- ♦ gas vs gas: two gaseous disks counter-rotate (e.g., NGC 7332)



NGC 4550 – SB0 stars vs stars counter-rotation



Rubin (1992)



NGC 4550 – SB0 stars vs stars counter-rotation



Rubin (1992)



# **CLASSIFICATION**

# Counter-rotation occurs in a variety of forms

- ♦ gas vs gas: two gaseous disks counter-rotate (e.g., NGC 7332)









# SIZE

#### Counter-rotation is observed in

- inner regions of the galaxy (cores, small-scale disks, bulges, bars) (e.g., NGC 3593)
- ♦ outer regions of the galaxy (nested disks) (e.g., NGC 4826)
- ♦ overall the galaxy (large-scale disks) (e.g., NGC 3626)



NGC 3593 – S0/a inner counter-rotation







NGC 3593 – S0/a inner counter-rotation





# SIZE

#### Counter-rotation is observed in

- inner regions of the galaxy (cores, small-scale disks, bulges, bars) (e.g., NGC 3593)
- outer regions of the galaxy (nested disks) (e.g., NGC 4826)
- ♦ overall the galaxy (large-scale disks) (e.g., NGC 3626)



NGC 4826 (M64) – Sab outer counter-rotation



Braun et al. (1992): HI Rubin (1994): ionized gas Rix et al. (1995): stars





Braun et al. (1992): HI Rubin (1994): ionized gas Rix et al. (1995): stars





Braun et al. (1992): HI Rubin (1994): ionized gas Rix et al. (1995): stars

# SIZE

#### Counter-rotation is observed in

- inner regions of the galaxy (cores, small-scale disks, bulges, bars) (e.g., NGC 3593)
- outer regions of the galaxy (nested disks) (e.g., NGC 4826)
- ♦ overall the galaxy (large-scale disks) (e.g., NGC 3626)



# NGC 3626 – S0/a overall counter-rotation

Ciri et al. (1995)



# **COUNTER-ROTATING COMPONENTS**

| COMPONENT     | HOST     | TYPE                                            | REGION                    |
|---------------|----------|-------------------------------------------------|---------------------------|
| Core          | Е        | stars vs. stars                                 | inner                     |
| Bulge (?)     | S0       | stars vs. stars                                 | inner                     |
| Disk          | E, S0, S | gas vs. stars<br>stars vs. stars<br>gas vs. gas | inner<br>outer<br>overall |
| Secondary bar | SB0      | stars vs. stars                                 | inner                     |
| Stars in bar  | SB0, SB  | stars vs. stars                                 | inner                     |

# MORPHOLOGICAL SIGNATURES

- ♦ Early-type galaxies harboring KDCs
  - do not differ from galaxies without KDCs (Krajnovic et al. 2011)
- ♦ No late-type spirals with counter-rotation
  - most of spirals are early (S0/a-Sab) with smooth arms
  - arm suppression is predicted by simulations of multi-armed spirals triggered by density inhomogeneities (D'Onghia et al. 2013)
- ♦ No evidence of interaction
  - same environment of galaxies with no counter-rotation (Bettoni et al. 2001)
  - need for deep optical imaging (e.g., Duc et al. 2011) since fine structures due to accretion events have low surface brightness (~27 mag arcsec<sup>-2</sup>)

The detection of a counter-rotating gaseous disk is straightforward

→ opposite inclination of emission/absorption lines

- ♦ depends on the fraction of retrograde stars, their velocity with respect to prograde stars, and instrumental setup
- → requires a bimodal LOSVD



The detection of a counter-rotating gaseous disk is straightforward

→ opposite inclination of emission/absorption lines

- depends on the fraction of retrograde stars, their velocity with respect to prograde stars, and instrumental setup
- → requires a bimodal LOSVD

The detection of a counter-rotating gaseous disk is straightforward

→ opposite inclination of emission/absorption lines

- depends on the fraction of retrograde stars, their velocity with respect to prograde stars, and instrumental setup



IC719 - S0counter-rotating stellar disks

Katkov et al. (2013)

fit = stars #1 + stars #2 \( \frac{1}{2} \) 0.10 Gauss-Hermite fit

0.05

0.00

1400

1800

Velocity, km/s

1600

2000



0.08

0.06 0.04

0.02

1400

2200

1600

1800

Velocity, km/s

2000

2200

The detection of a counter-rotating gaseous disk is straightforward

→ opposite inclination of emission/absorption lines

- depends on the fraction of retrograde stars, their velocity with respect to prograde stars, and instrumental setup



# NGC 5719 – Sab counter-rotating stellar disks



Vergani et al. (2007)

0

Position along the slit (arcsec)

40

10

Radial Velocity (km/s)

1850

1650

1450

1250

-40

-10



# double σ-peak galaxies

Krajnovic et al. (2011)





## **STATISTICS – EARLY-TYPE GALAXIES**

#### long-slit data/IFU data

- ♦ Early-type galaxies gas vs stars
  - Bertola et al. (1990): 3/6 dust-lane Es = 50%
  - Bertola et al. (1992): 9/26 S0s with gas = 35%
  - Pizzella et al. (2004): 17/53 S0s with gas = 32%
  - Davis et al. (2011): 9/133 E/S0s with gas = 7% (40% decoupled)
- ♦ Early-type galaxies stars vs stars
  - cores: Mehlert et al. (2000): 1/35 Coma E/S0s = 3%
     Krajnovic et al. (2011): 8/260 E/S0s = 4%
  - disks: Kuijken et al. (1996): 0/17 S0s with gas = <10% (with 10% stars on retrograde orbits)

#### STATISTICS - SPIRALS

#### long-slit data/IFU data

#### ♦ Spirals - gas vs stars

- Kannappan et al. (2001): 0/38 Sa-Sbc = <8%</li>
- Pizzella et al. (2004): 2/50 S0/a-Sd = 4%
- Falcon-Barroso et al. (2006): 1/24 Sa = 4%
- Ganda et al. (2006): 0/18 Sb-Sd = 0%
- Barrera-Ballesteros et al. (2014): 0/77 Sa-Sc = 0%

#### ♦ Spirals - stars vs stars

- Pizzella et al. (2004): 1/50 S0/a-Sd = 2%
- Falcon-Barroso et al. (2006): 1/24 Sa = 4%
- Ganda et al. (2006): 0/18 Sb-Sd = 0%

Different scenarios for building counter-rotating components

#### 

- gas accretion: retrograde acquisition of gas and subsequent star formation (e.g., Thakar & Ryden 1996, 1998)
- minor merging: retrograde capture of a (gas-rich) dwarf companion (e.g., Balcells & Quinn 1990, Thakar et al. 1997)
- major merging: gas for cores (e.g., Hoffman et al. 2010)
   tuned initial conditions for disks (e.g., Crocker et al. 2009)

#### ♦ internal origin

- bar structure: retrograde orbits trapped around x<sub>4</sub> family (Wozniak & Pfenniger 1997)
- bar dissolution: box-orbit stars are scattered onto clockwise/ counter-clockwise-streaming tube orbits (Ewans & Collett 1994)

#### infalling gas

#### face-on view



#### edge-on view





Thakar & Ryden (1998)

Different scenarios for building counter-rotating components

#### 

- gas accretion: retrograde acquisition of gas and subsequent star formation (e.g., Thakar & Ryden 1996, 1998)
- minor merging: retrograde capture of a (gas-rich) dwarf companion (e.g., Balcells & Quinn 1990; Thakar et al. 1997)
- major merging: gas for cores (e.g., Hoffman et al. 2010)
   tuned initial conditions for disks (e.g., Crocker et al. 2009)

#### ♦ internal origin

- bar structure: retrograde orbits trapped around x<sub>4</sub> family (Wozniak & Pfenniger 1997)
- bar dissolution: box-orbit stars are scattered onto clockwise/ counter-clockwise-streaming tube orbits (Ewans & Collett 1994)

### gas-rich dwarf

#### face-on view

| t = 1.3 | t = 1.5 | t = 1.7 | t = 1.9 | t = 2.1      |
|---------|---------|---------|---------|--------------|
|         |         |         |         | 1            |
| t = 2.5 | t = 2.7 | t = 3.1 | t = 3.9 | t = 4.5 (x2) |
|         |         |         |         |              |
|         |         |         |         |              |

#### edge-on view



Thakar et al. (1997)



Thakar et al. (1997)

Different scenarios for building counter-rotating components

#### 

- gas accretion: retrograde acquisition of gas and subsequent star formation (e.g., Thakar & Ryden 1996, 1998)
- minor merging: retrograde capture of a (gas-rich) dwarf companion (e.g., Balcells & Quinn 1990; Thakar et al. 1997)
- major merging: gas for cores (e.g., Hoffman et al. 2010)
   tuned initial conditions for disks (e.g., Crocker et al. 2009)

#### ♦ internal origin

- bar structure: retrograde orbits trapped around x<sub>4</sub> family (Wozniak & Pfenniger 1997)
- bar dissolution: box-orbit stars are scattered onto clockwise/ counter-clockwise-streaming tube orbits (Ewans & Collett 1994)





Different scenarios for building counter-rotating components

#### 

- gas accretion: retrograde acquisition of gas and subsequent star formation (e.g., Thakar & Ryden 1996, 1998)
- minor merging: retrograde capture of a (gas-rich) dwarf companion (e.g., Balcells & Quinn 1990; Thakar et al. 1997)
- major merging: gas for cores (e.g., Hoffman et al. 2010)
   tuned initial conditions for disks (e.g., Crocker et al. 2009)

#### 

- bar structure: retrograde orbits trapped around x<sub>4</sub> family (Wozniak & Pfenniger 1997)
- bar dissolution: box-orbit stars are scattered onto clockwise/ counter-clockwise-streaming tube orbits (Ewans & Collett 1994)

## SB0s - local stellar counter-rotation



Different scenarios for building counter-rotating components

#### 

- gas accretion: retrograde acquisition of gas and subsequent star formation (e.g., Thakar & Ryden 1996, 1998)
- minor merging: retrograde capture of a (gas-rich) dwarf companion (e.g., Balcells & Quinn 1990; Thakar et al. 1997)
- major merging: gas for cores (e.g., Hoffman et al. 2010)
   tuned initial conditions for disks (e.g., Crocker et al. 2009)

#### 

- bar structure: retrograde orbits trapped around x<sub>4</sub> family (Wozniak & Pfenniger 1997)
- bar dissolution: box-orbit stars are scattered onto clockwise/ counter-clockwise-streaming tube orbits (Ewans & Collett 1994)

#### STELLAR POPULATIONS

The properties of the stellar populations are a key to disentangle between the different formation scenarios

#### 

- gas accretion: counter-rotating stars are associated with gas and younger than the host galaxy
- minor/major merging: counter-rotating stars are not always associated with gas and younger than the host galaxy

#### 

 bar dissolution: the two counter-rotating components have the same stellar population



# 

# NGC 5813 – E1-2 counter-rotating core

Kuntschner et al. (2010) Krajnovic et al. (2015)

#### stars host

- old
- less metal-rich

#### stars core

- old
- more metal-rich





#### **COUNTER-ROTATION: STATUS**

- ♦ It shows a variety of forms (gas vs gas, stars vs stars, gas vs gas)
- ♦ It is observed in different regions (inner, outer, overall)
- ♦ No obvious morphological signatures (but not in late-type spirals)
- Obvious kinematic signatures (but LOSVD issue for detecting stars vs stars)
- ♦ It is not so rare (4% Es with stars vs stars; 30% S0s with gas vs stars; <10% S0s with stars vs stars; <10% spirals with gas/stars vs stars; most of SB0s)</p>
- Doth external (accretion) and internal (bar) processes explain the formation of counter-rotation
- ♦ Stellar populations promise to nail down the formation mechanism

#### **COUNTER-ROTATION: FUTURE**

- Photometry: deep imaging survey to look for fingerprints of accretion/merging events
- Kinematics: detailed analysis of LOSVD to look for undetected retrograde stars
- Statistics: volume/luminosity-limited samples to drive unbiased conclusions
- ♦ Simulations: not limited to few cases but exploring a wider parameter-space
- ♦ Stellar populations: to test predictions of the formation scenarios